Newton's Method and Linear Approximations

Curves are tricky. Lines aren't.

Newton's Method and Linear Approximations

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$\downarrow_{0.3} \qquad \downarrow_{0.4} \qquad \downarrow_{0.5} \qquad x_0$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$

 $f(x) = x^7 + 3x^3 + 7x^2 - 1$ $f'(x) = 7x^6 + 9x^2 + 14x$

	i	x_i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
	0	0.5				
	1					
:	2					
	3					

 $f(x) = x^7 + 3x^3 + 7x^2 - 1$ $f'(x) = 7x^6 + 9x^2 + 14x$

i	x _i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1					
_					
2					
2					
3					

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

i	x _i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379				
2					
•					
3					

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

i	x _i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2					
3					
		l	I		l

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

i	x _i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2	0.353				
3					
	l		I		

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

$I \mid X_i \mid$	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0 0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1 0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2 0.353	0.007	6.084	y = 0.007 + 6.084(x - 0.353)	0.352
3				

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

i	x _i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2	0.353	0.007	6.084	y = 0.007 + 6.084(x - 0.353)	0.352
3	0.352				

$$f(x) = x^7 + 3x^3 + 7x^2 - 1$$
$$f'(x) = 7x^6 + 9x^2 + 14x$$

i	x_i	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2	0.353	0.007	6.084	y = 0.007 + 6.084(x - 0.353)	0.352
3	0.352	0.00001	6.060	y = 0.00001 + 6.060(x - 0.352)	0.352

Step 1: Pick a place to start. Call it x_0 .

Step 1: Pick a place to start. Call it x_0 .

Step 2: The tangent line at x_0 is $y = f(x_0) + f'(x_0) * (x - x_0)$. To find where this intersects the x-axis, solve

$$0 = f(x_0) + f'(x_0) * (x - x_0) \quad \text{to get} \quad x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

This value is your x_1 .

- Step 1: Pick a place to start. Call it x_0 .
- Step 2: The tangent line at x_0 is $y = f(x_0) + f'(x_0) * (x x_0)$. To find where this intersects the x-axis, solve

$$0 = f(x_0) + f'(x_0) * (x - x_0) \quad \text{to get} \quad x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

This value is your x_1 .

Step 3: Repeat with your new x-value. In general, the 'next' value is

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

- Step 1: Pick a place to start. Call it x_0 .
- Step 2: The tangent line at x_0 is $y = f(x_0) + f'(x_0) * (x x_0)$. To find where this intersects the x-axis, solve

$$0 = f(x_0) + f'(x_0) * (x - x_0) \quad \text{to get} \quad x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

This value is your x_1 .

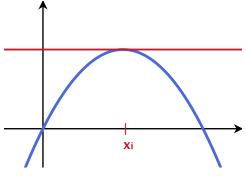
Step 3: Repeat with your new x-value. In general, the 'next' value is

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Step 4: Keep going until your x_i 's stabilize. What they stabilize to is an approximation of your root!

Caution!

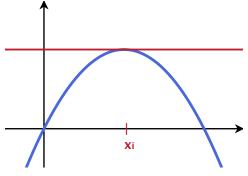
Bad places to pick: Critical points! (where f'(x)=0)



Tangent line has no x-intercept!

Caution!

Bad places to pick: Critical points! (where f'(x)=0)



Tangent line has no x-intercept!

Even *near* critical points, the algorithm goes much slower.

Just stay away!

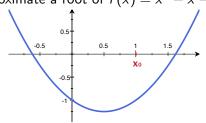
You try: Approximate a root of $f(x) = x^2 - x - 1$ near $x_0 = 1$.



$$f'(x) =$$

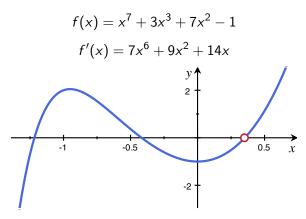
		. ,		
i	x _i	$f(x_i)$	$f'(x_i)$	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
0	1			
1				
2				

You try: Approximate a root of $f(x) = x^2 - x - 1$ near $x_0 = 1$.



$$f'(x) = 2x - 1$$

i	x _i	$f(x_i)$	$f'(x_i)$	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
0	1	-1	1	2
1	2	1	3	$5/3\approx 1.667$
2	5/3	1/9	7/3	$34/21\approx 1.619$



 $r_1 \approx$

 $r_2 \approx$

 $r_3 \approx 0.352$

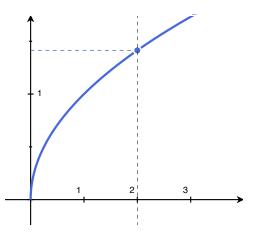
$$-1.217$$

 $r_1 \approx -1.217$ $r_2 \approx -0.418$ $r_3 \approx 0.352$

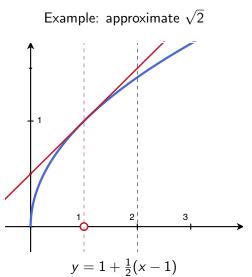
Goal: approximate functions

Goal: approximate functions

Example: approximate $\sqrt{2}$

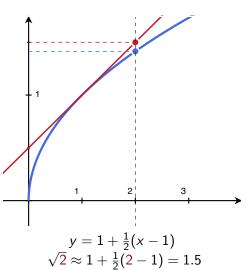


Goal: approximate functions

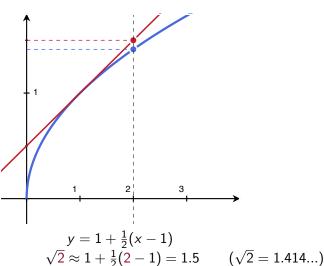


Goal: approximate functions

Example: approximate $\sqrt{2}$



Goal: approximate functions



Linear approximations

If f(x) is differentiable at a, then the tangent line to f(x) at x = a is

$$y = f(a) + f'(a) * (x - a).$$

For values of x near a, then

$$f(x) \approx f(a) + f'(a) * (x - a).$$

This is the *linear approximation* of f about x = a. We usually call the line L(x).

Our last approximation told us

$$\sqrt{5} \approx L(5) = 1 + \frac{1}{2}(5-1) = 3$$

This isn't great...
$$(3^2 = 9)$$

Our last approximation told us

$$\sqrt{5} \approx L(5) = 1 + \frac{1}{2}(5-1) = 3$$

This isn't great...
$$(3^2 = 9)$$

Better: Use the linear approximation about x = 4!

Our last approximation told us

$$\sqrt{5} \approx L(5) = 1 + \frac{1}{2}(5-1) = 3$$

This isn't great... $(3^2 = 9)$

Better: Use the linear approximation about x = 4!

The tangent line is

$$L(x) = 2 + \frac{1}{4}(x - 4)$$

SO

$$\sqrt{5} \approx L(5) = 2 + \frac{1}{4}(5-4) = 2.25$$

Better! $(2.25^2 = 5.0625)$

The linear approximation is the line which satisfies

$$L(a) = f(a) + f'(a)(a-a) = \boxed{f(a)}$$

and

$$L'(a) = \frac{d}{dx} \left(f(a) + f'(a)(x - a) \right) = \boxed{f'(a)}$$

The linear approximation is the line which satisfies

$$L(a) = f(a) + f'(a)(a-a) = \boxed{f(a)}$$

and

$$L'(a) = \frac{d}{dx} \left(f(a) + f'(a)(x - a) \right) = \boxed{f'(a)}$$

A **better** approximation might be a quadratic polynomial $p_2(x)$ which **also** satisfies $p_2''(a) = f''(a)$:

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$$

The linear approximation is the line which satisfies

$$L(a) = f(a) + f'(a)(a-a) = \boxed{f(a)}$$

and

$$L'(a) = \frac{d}{dx} \left(f(a) + f'(a)(x - a) \right) = \boxed{f'(a)}$$

A **better** approximation might be a quadratic polynomial $p_2(x)$ which **also** satisfies $p_2''(a) = f''(a)$:

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$$

or a cubic polynomial $p_3(x)$ which also satisfies $p_3^{(3)}(a) = f^{(3)}(a)$:

$$p_3(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{2*3}f^{(3)}(a)(x-a)^3$$

The linear approximation is the line which satisfies

$$L(a) = f(a) + f'(a)(a - a) = f(a)$$

and

$$L'(a) = \frac{d}{dx} \left(f(a) + f'(a)(x - a) \right) = \boxed{f'(a)}$$

A **better** approximation might be a quadratic polynomial $p_2(x)$ which **also** satisfies $p_2''(a) = f''(a)$:

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$$

or a cubic polynomial $p_3(x)$ which also satisfies $p_3^{(3)}(a) = f^{(3)}(a)$:

$$p_3(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{2*3}f^{(3)}(a)(x-a)^3$$

and so on...

These approximations are called Taylor polynomials (read §2.14)