Newton's Method and Linear Approximations

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

Newton's Method for finding roots

Goal: Where is $f(x)=0$?

$$
f(x)=x^{7}+3 x^{3}+7 x^{2}-1
$$

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	-intercept
0	0.5				
1					
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1					
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379				
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2					
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353				
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3					

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3	0.352				

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	tangent line	x-intercept
0	0.5	1.133	9.359	$y=1.133+9.359(x-0.5)$	0.379
1	0.379	0.170	6.619	$y=0.170+6.619(x-0.379)$	0.353
2	0.353	0.007	6.084	$y=0.007+6.084(x-0.353)$	0.352
3	0.352	0.00001	6.060	$y=0.00001+6.060(x-0.352)$	0.352

Newton's Method

Step 1: Pick a place to start. Call it x_{0}.

Newton's Method

Step 1: Pick a place to start. Call it x_{0}.
Step 2: The tangent line at x_{0} is $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right)$. To find where this intersects the x-axis, solve

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right) \quad \text { to get } \quad x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

This value is your x_{1}.

Newton's Method

Step 1: Pick a place to start. Call it x_{0}.
Step 2: The tangent line at x_{0} is $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right)$. To find where this intersects the x-axis, solve

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right) \quad \text { to get } \quad x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

This value is your x_{1}.
Step 3: Repeat with your new x-value. In general, the 'next' value is

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

Newton's Method

Step 1: Pick a place to start. Call it x_{0}.
Step 2: The tangent line at x_{0} is $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right)$. To find where this intersects the x-axis, solve

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right) \quad \text { to get } \quad x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

This value is your x_{1}.
Step 3: Repeat with your new x-value. In general, the 'next' value is

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

Step 4: Keep going until your x_{i} 's stabilize.
What they stabilize to is an approximation of your root!

Caution!

Bad places to pick: Critical points! (where $\left.f^{\prime}(x)=0\right)$

Tangent line has no x-intercept!

Caution!

Bad places to pick: Critical points! (where $\left.f^{\prime}(x)=0\right)$

Tangent line has no x-intercept!

Even near critical points, the algorithm goes much slower. Just stay away!

You try: Approximate a root of $f(x)=x^{2}-x-1$ near $x_{0}=1$.

$$
f^{\prime}(x)=
$$

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
0	1			
1				
2				

Back to the example:

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

Back to the example:

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

$r_{3} \approx 0.352$

Back to the example:

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

$r_{2} \approx$
$r_{3} \approx 0.352$

Back to the example:

$$
\begin{gathered}
f(x)=x^{7}+3 x^{3}+7 x^{2}-1 \\
f^{\prime}(x)=7 x^{6}+9 x^{2}+14 x
\end{gathered}
$$

$$
r_{1} \approx-1.217 \quad r_{2} \approx-0.418 \quad r_{3} \approx 0.352
$$

Linear approximations of functions

Goal: approximate functions

Linear approximations of functions

Goal: approximate functions

$$
\text { Example: approximate } \sqrt{2}
$$

Linear approximations of functions

Goal: approximate functions

$$
\text { Example: approximate } \sqrt{2}
$$

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

$$
\begin{gathered}
y=1+\frac{1}{2}(x-1) \\
\sqrt{2} \approx 1+\frac{1}{2}(2-1)=1.5
\end{gathered}
$$

Linear approximations of functions

Goal: approximate functions
Example: approximate $\sqrt{2}$

$$
\begin{gathered}
y=1+\frac{1}{2}(x-1) \\
\sqrt{2} \approx 1+\frac{1}{2}(2-1)=1.5 \quad(\sqrt{2}=1.414 \ldots)
\end{gathered}
$$

Linear approximations

If $f(x)$ is differentiable at a, then the tangent line to $f(x)$ at $x=a$ is

$$
y=f(a)+f^{\prime}(a) *(x-a)
$$

For values of x near a, then

$$
f(x) \approx f(a)+f^{\prime}(a) *(x-a)
$$

This is the linear approximation of f about $x=a$. We usually call the line $L(x)$.

Approximate $\sqrt{5}$:

Approximate $\sqrt{5}$:
Our last approximation told us

$$
\sqrt{5} \approx L(5)=1+\frac{1}{2}(5-1)=3
$$

This isn't great...

$$
\left(3^{2}=9\right)
$$

Approximate $\sqrt{5}$:
Our last approximation told us

$$
\sqrt{5} \approx L(5)=1+\frac{1}{2}(5-1)=3
$$

This isn't great...

$$
\left(3^{2}=9\right)
$$

Better: Use the linear approximation about $x=4$!

Even better approximations...

The linear approximation is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

Even better approximations...

The linear approximation is the line which satisfies

$$
\begin{aligned}
& L(a)=f(a)+f^{\prime}(a)(a-a)=f(a) \\
& \text { and } \\
& L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
\end{aligned}
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Even better approximations...

The linear approximation is the line which satisfies

$$
L(a)=f(a)+f^{\prime}(a)(a-a)=f(a)
$$

and

$$
L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

or a cubic polynomial $p_{3}(x)$ which also satisfies $p_{3}^{(3)}(a)=f^{(3)}(a)$:

$$
p_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{2 * 3} f^{(3)}(a)(x-a)^{3}
$$

Even better approximations...

The linear approximation is the line which satisfies

$$
L(a)=f(a)+f^{\prime}(a)(a-a)=f(a)
$$

and

$$
L^{\prime}(a)=\frac{d}{d x}\left(f(a)+f^{\prime}(a)(x-a)\right)=f^{\prime}(a)
$$

A better approximation might be a quadratic polynomial $p_{2}(x)$ which also satisfies $p_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)$:

$$
p_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

or a cubic polynomial $p_{3}(x)$ which also satisfies $p_{3}^{(3)}(a)=f^{(3)}(a)$:

$$
p_{3}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{2 * 3} f^{(3)}(a)(x-a)^{3}
$$

and so on...
These approximations are called Taylor polynomials (read $\S 2.14$)

