Derivatives of inverse functions

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$,

Ex 2: If $e^y = x$, then take then take $\frac{d}{dx}$ of both sides to find $\frac{d}{dx}$ of both sides to find

$$\frac{dy}{dx} * e^y = x \frac{dy}{dx} + y.$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

$$e^{x} = 1$$
 or $e^{y} = xy$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find $\frac{d}{dx}$ of both sides to find

Ex 2: If
$$e^y = x$$
, then take $\frac{d}{dx}$ of both sides to find

$$\frac{dy}{dx} * e^y = x \frac{dy}{dx} + y.$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$y = \frac{dy}{dx} * e^{y} - x \frac{dy}{dx} = \frac{dy}{dx} (e^{y} - x)$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

Ex 1: If $x^2 + y^2 = 1$, then take $\frac{d}{dx}$ of both sides to find $\frac{d}{dx}$ of both sides to find

Ex 2: If
$$e^y = x$$
, then take $\frac{d}{dx}$ of both sides to find

$$\frac{dy}{dx} * e^y = x \frac{dy}{dx} + y.$$

$$2x + 2y * \frac{dy}{dx} = 0$$

$$y = \frac{dy}{dx} * e^{y} - x \frac{dy}{dx} = \frac{dy}{dx} (e^{y} - x)$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

So
$$\left| \frac{dy}{dx} = \frac{y}{e^y - x} \right|$$

We can now take derivatives of things that look like

$$x^2 + y^2 = 1 \qquad \text{or } e^y = xy$$

then take
$$\frac{d}{dx}$$
 of both sides to find

Ex 1: If
$$x^2 + y^2 = 1$$
, then take $\frac{d}{dx}$ of both sides to find $\frac{d}{dx}$ of both sides to find

$$2x + 2y * \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} * e^y = x \frac{dy}{dx} + y.$$

$$y = \frac{dy}{dx} * e^{y} - x \frac{dy}{dx} = \frac{dy}{dx} (e^{y} - x)$$

SO

$$\frac{dy}{dx} = -\frac{x}{y}$$

So
$$\left| \frac{dy}{dx} = \frac{y}{e^y - x} \right|$$

Every time:

- (1) Take $\frac{d}{dx}$ of both sides.
- (2) Add and subtract to get the $\frac{dy}{dx}$ on one side and everything else on the other.
- (3) Factor out $\frac{dy}{dx}$ and divide both sides by its coefficient.

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$.

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(-\sin(y)-1)=1$$
, and so $\frac{dy}{dx}=\frac{1}{-\sin(y)-1}$

2. Calculate $\frac{dx}{dy}$

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(-\sin(y)-1)=1$$
, and so $\frac{dy}{dx}=\frac{1}{-\sin(y)-1}$

2. Calculate $\frac{dx}{dy}$ Now take $\frac{d}{dy}$:

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(-\sin(y)-1)=1$$
, and so $\frac{dy}{dx}=\frac{1}{-\sin(y)-1}$

2. Calculate $\frac{dx}{dy}$ Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$.

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(-\sin(y)-1)=1$$
, and so $\frac{dy}{dx}=\frac{1}{-\sin(y)-1}$

2. Calculate $\frac{dx}{dy}$ Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$. So

$$\frac{dx}{dy} = -\sin(x) - 1$$

We can also take derivatives versus other variables:

Example Suppose cos(y) = x + y.

1. Calculate $\frac{dy}{dx}$ Take $\frac{d}{dx}$ as before: $-\frac{dy}{dx} * \sin(y) = 1 + \frac{dy}{dx}$. So

$$\frac{dy}{dx}(-\sin(y)-1)=1$$
, and so $\frac{dy}{dx}=\frac{1}{-\sin(y)-1}$

2. Calculate $\frac{dx}{dy}$

Now take $\frac{d}{dy}$: $-\sin(y) = \frac{dx}{dy} + 1$. So

$$\frac{dx}{dy} = -\sin(x) - 1$$

Notice:

$$\frac{dy}{dx} = 1/\left(\frac{dx}{dy}\right)$$

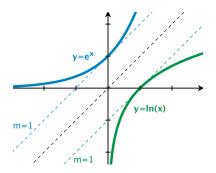
This is true in general!

Using implicit differentiation for good: Inverse functions.

Remember:

- (1) $y = e^x$ has a slope through the point (0,1) of 1.
- (2) The natural log is the *inverse* to e^x , so

$$y = \ln x \implies e^y = x$$



To find the derivative of ln(x), use implicit differentiation!

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it!

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}}$$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

To find the derivative of ln(x), use implicit differentiation! Rewrite

$$y = \ln x$$
 as $e^y = x$

Take a derivative of both sides of $e^y = x$ to get

$$\frac{dy}{dx}e^y = 1$$
 so $\frac{dy}{dx} = \frac{1}{e^y}$

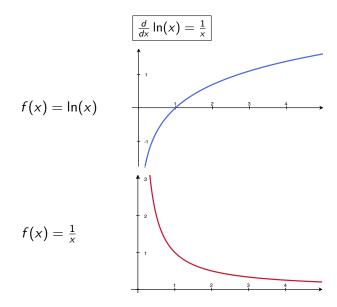
Problem: We asked "what is the derivative of ln(x)?" and got back and answer with y in it!

Solution: Substitute back!

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Does it make sense?



Calculate

- 1. $\frac{d}{dx} \ln x^2$
- 2. $\frac{d}{dx} \ln(\sin(x^2))$
- 3. $\frac{d}{dx} \log_3(x)$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Calculate

1.
$$\frac{d}{dx} \ln x^2 = \frac{2x}{x^2} = \frac{2}{x}$$

$$2. \frac{d}{dx} \ln(\sin(x^2)) = \frac{2x \cos(x^2)}{\sin(x^2)}$$

$$3. \ \frac{d}{dx} \log_3(x) = \frac{1}{x \ln(3)}$$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Calculate

1.
$$\frac{d}{dx} \ln x^2 = \frac{2x}{x^2} = \frac{2}{x}$$

$$2. \frac{d}{dx} \ln(\sin(x^2)) = \frac{2x \cos(x^2)}{\sin(x^2)}$$

$$3. \ \frac{d}{dx}\log_3(x) = \frac{1}{x\ln(3)}$$

[hint:
$$\log_a x = \frac{\ln x}{\ln a}$$
]

Notice, every time:

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

(1) Rewrite
$$y = f^{-1}(x)$$
 as $f(y) = x$.

Back to inverses

In the case where $y = \ln(x)$, we used the fact that $\ln(x) = f^{-1}(x)$, where $f(x) = e^x$, and got

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}.$$

In general, calculating $\frac{d}{dx}f^{-1}(x)$:

- (1) Rewrite $y = f^{-1}(x)$ as f(y) = x.
- (2) Use implicit differentiation:

$$f'(y)*\frac{dy}{dx}=1$$
 so $\left[\frac{dy}{dx}=\frac{1}{f'(y)}=\frac{1}{f'(f^{-1}(x))}\right]$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x) In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.

We'll also need $f'(x) = e^x$.

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$. So

$$\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}$$

Examples

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$. So

$$\boxed{\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}} \quad \odot$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2) In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.

Examples

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$. So

$$\boxed{\frac{d}{dx}\ln(x) = \frac{1}{e^{\ln(x)}}} \quad \odot$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)
In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.
We'll also need f'(x) = 2x.

Examples

Just to check, use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to calculate

1. $\frac{d}{dx} \ln(x)$ (the inverse of e^x)
In the notation above, $f^{-1}(x) = \ln(x)$ and $f(x) = e^x$.
We'll also need $f'(x) = e^x$. So

$$\left| \frac{d}{dx} \ln(x) = \frac{1}{e^{\ln(x)}} \right| \quad \odot$$

2. $\frac{d}{dx}\sqrt{x}$ (the inverse of x^2)
In the notation above, $f^{-1}(x) = \sqrt{x}$ and $f(x) = x^2$.
We'll also need f'(x) = 2x. So

$$\left| \frac{d}{dx} \sqrt{x} = \frac{1}{2 * (\sqrt{x})} \right| \quad \odot$$

Inverse trig functions

Two notations:

f(x)	$f^{-1}(x)$
sin(x)	$ \sin^{-1}(x) = \arcsin(x) $
cos(x)	$\cos^{-1}(x) = \arccos(x)$
tan(x)	$tan^{-1}(x) = arctan(x)$
sec(x)	$\sec^{-1}(x) = \operatorname{arcsec}(x)$
csc(x)	$\csc^{-1}(x) = \operatorname{arccsc}(x)$
$\cot(x)$	$\cot^{-1}(x) = \operatorname{arccot}(x)$

Inverse trig functions

Two notations:

$$f(x) f^{-1}(x)$$

$$sin(x) sin^{-1}(x) = arcsin(x)$$

$$cos(x) cos^{-1}(x) = arccos(x)$$

$$tan(x) tan^{-1}(x) = arctan(x)$$

$$sec(x) sec^{-1}(x) = arcsec(x)$$

$$csc(x) csc^{-1}(x) = arccsc(x)$$

$$cot(x) cot^{-1}(x) = arccot(x)$$

There are lots of points we know on these functions...

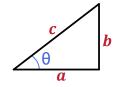
Examples:

- 1. Since $\sin(\pi/2) = 1$, we have $\arcsin(1) = \pi/2$
- 2. Since $cos(\pi/2) = 0$, we have $arccos(0) = \pi/2$

Etc...

In general:

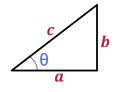
arc__(-) takes in a ratio and spits out an angle:



$$\cos(\theta) = a/c$$
 so $\arccos(a/c) = \theta$
 $\sin(\theta) = b/c$ so $\arcsin(b/c) = \theta$
 $\tan(\theta) = b/a$ so $\arctan(b/a) = \theta$

In general:

arc__(-) takes in a ratio and spits out an angle:

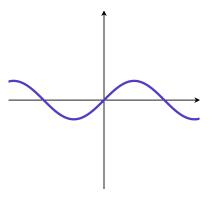


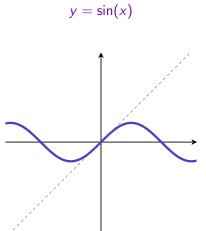
$$\cos(\theta) = a/c$$
 so $\arccos(a/c) = \theta$
 $\sin(\theta) = b/c$ so $\arcsin(b/c) = \theta$
 $\tan(\theta) = b/a$ so $\arctan(b/a) = \theta$

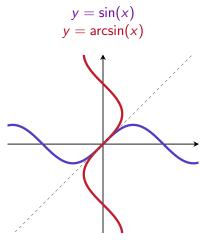
Domain problems:

$$\sin(0) = 0$$
, $\sin(\pi) = 0$, $\sin(2\pi) = 0$, $\sin(3\pi) = 0$,...

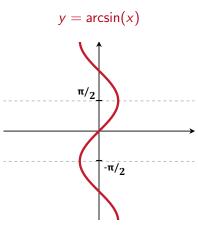
So which is the right answer to arcsin(0), really?



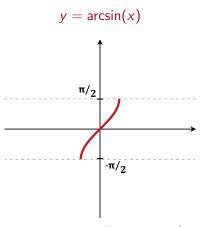




Domain: $-1 \le x \le 1$

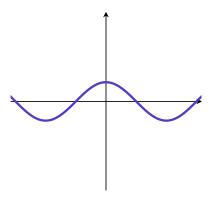


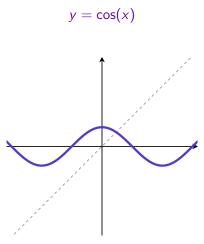
Domain: $-1 \le x \le 1$

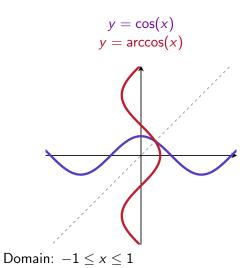


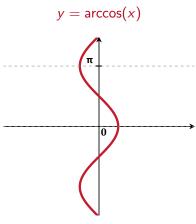
Domain: $-1 \le x \le 1$ Range: $-\pi/2 \le y \le \pi/2$

${\sf Domain}/{\sf range}$

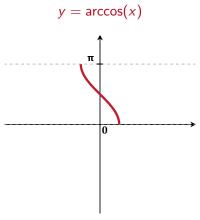






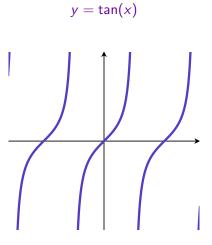


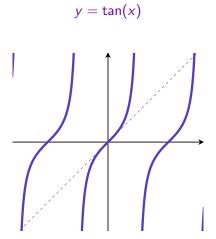
Domain: $-1 \le x \le 1$

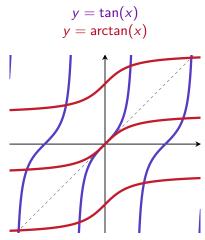


Domain: $-1 \le x \le 1$

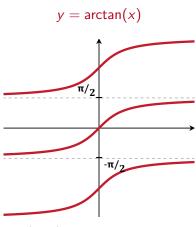
Range: $0 \le y \le \pi$



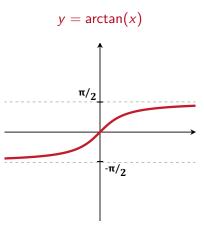




Domain: $-\infty \le x \le \infty$

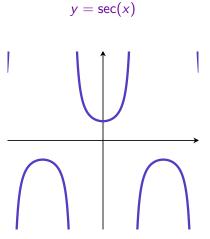


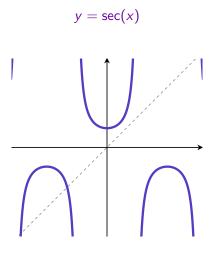
Domain: $-\infty \le x \le \infty$

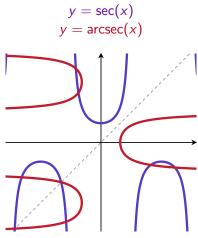


Domain: $-\infty \le x \le \infty$

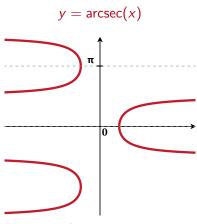
Range: $-\pi/2 < y < \pi/2$



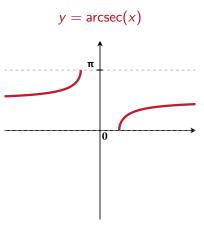




Domain: $x \le -1$ and $1 \le x$

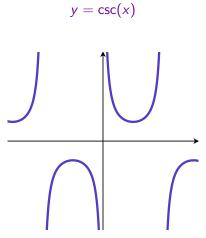


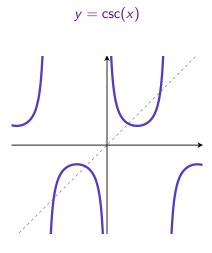
Domain: $x \le -1$ and $1 \le x$

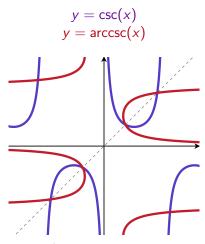


Domain: $x \le -1$ and $1 \le x$

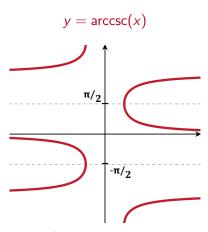
Range: $0 \le y \le \pi$



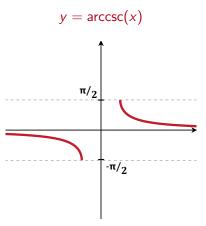




Domain: $x \le -1$ and $1 \le x$

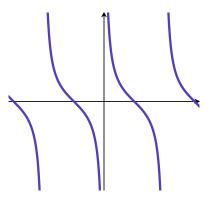


Domain: $x \le -1$ and $1 \le x$

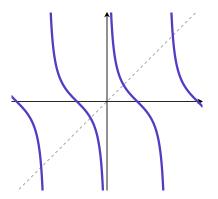


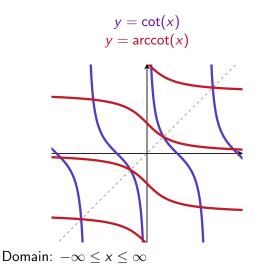
Domain: $x \le -1$ and $1 \le x$

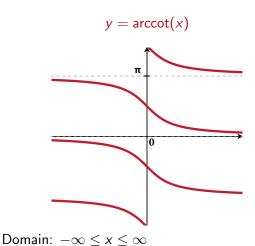
Range: $-\pi/2 \le y \le \pi/2$



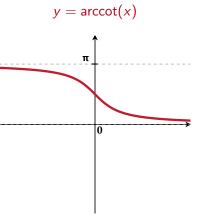
$$y = \cot(x)$$







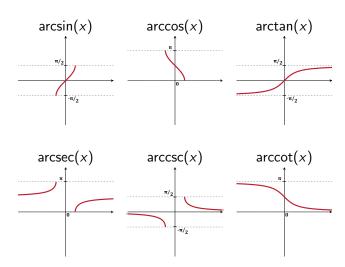
Domain/range



Domain: $-\infty \le x \le \infty$

Range: $0 < y < \pi$

Graphs



```
Recall:
```

f(x)

f'(x)

cos(x)

 $-\sin(x)$

 $sec^2(x)$

sec(x) tan(x)

 $-\csc(x)\cot(x)$

 $-\csc^2(x)$

tan(x)

sec(x)

csc(x)

cot(x)

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. arcsin(x)
- 2. arctan(x)

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

- 1. $\frac{d}{dx} \arccos(x)$
- 2. $\frac{d}{dx}$ arcsec(x)
- 3. $\frac{d}{dx} \operatorname{arccsc}(x)$
- 4. $\frac{d}{dx}\operatorname{arccot}(x)$

Back to Derivatives

Use implicit differentiation to calculate the derivatives of

- 1. $\arcsin(x) = \frac{1}{\cos(\arcsin(x))}$
- 2. $\arctan(x) = \frac{1}{\sec^2(\arctan(x))}$

Use the rule

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

to check your answers, and then to calculate the derivatives of the other inverse trig functions:

- 1. $\frac{d}{dx} \arccos(x) = -\frac{1}{\sin(\arccos(x))}$
- 2. $\frac{d}{dx} \operatorname{arcsec}(x) = \frac{1}{\operatorname{sec}(\operatorname{arcsec}(x)) \operatorname{tan}(\operatorname{arcsec}(x))}$
- 3. $\frac{d}{dx} \operatorname{arccsc}(x) = -\frac{1}{\operatorname{csc}(\operatorname{arccsc}(x)) \cot(\operatorname{arccsc}(x))}$
- 4. $\frac{d}{dx}\operatorname{arccot}(x) = -\frac{1}{\csc^2(\operatorname{arccot}(x))}$

Using implicit differentiation to calculate $\frac{d}{dx} \arcsin(x)$

If
$$y = \arcsin(x)$$
 then $x = \sin(y)$.

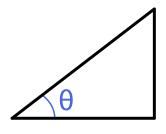
Take $\frac{d}{dx}$ of both sides of $x = \sin(y)$:

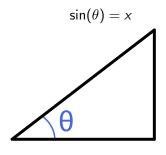
Left hand side:
$$\frac{d}{dx}x = 1$$

Right hand side:
$$\frac{d}{dx}\sin(y) = \cos(y)*\frac{dy}{dx} = \cos(\arcsin(x))*\frac{dy}{dx}$$

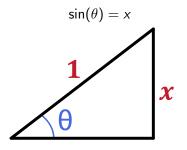
So

$$\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}.$$

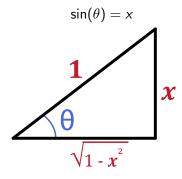


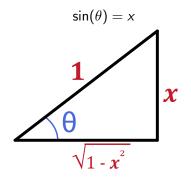


Call $\arcsin(x) = \theta$.

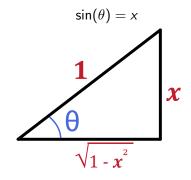


Key: This is a simple triangle to write down whose angle θ has $\sin(\theta) = x$





So
$$\cos(\theta) = \sqrt{1 - x^2}/1$$



So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

$$\sin(\theta) = x$$

$$\frac{1}{\sqrt{1 - x^2}}$$

So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

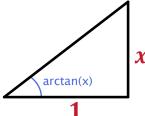
So
$$\frac{d}{dx} \arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}$$
.

Calculating $\frac{d}{dx} \arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(x)} = \left(\frac{1}{\sec(x)}\right)^2$$

Simplify this expression using



Calculating $\frac{d}{dx} \arctan(x)$.

We found that

$$\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(x)} = \left(\frac{1}{\sec(x)}\right)^2$$

Simplify this expression using

$$\frac{dy}{dx} = \left(\frac{1}{\sec(\arctan(x))}\right)^2 = \frac{1}{1+x^2}$$

To simplify the rest, use the triangles

