Derivatives of inverse functions
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More on implicit differentiation
We can now take derivatives of things that look like

2 4+y?=1 or ¢¥ = xy

Ex 1: If x>+ y? =1, Ex 2: If & = x, then take
then take % of both sides to find % of both sides to find

Y — )
dx>ke de+y
d
42y« X =0 So
dx
Ay
y_dx*e dx_dx(
SO
d X
AR So Q: 4
dx y dx e —x
Every time:

(1) Take dix of both sides.

(2) Add and subtract to get the Z—y on one side and everything else on the other.
X

(3) Factor out % and divide both sides by its coefficient.
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More on implicit differentiation

We can also take derivatives versus other variables:
Example Suppose cos(y) = x + y.

1. Calculate d
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More on implicit differentiation

We can also take derivatives versus other variables:
Example Suppose cos(y) = x + y.

1. Calculate d

Take £ as before —% xsin(y) =1 —|—

%(—sinm ~1)=

dx
2. Calculate dy

Now take d%: —sin(y) = dy +1. So

L

and so

. So

dy

&:

1

—sin(y) —

1

dx

&y = —sin(x) — 1

Notice:
dy

dx
This is true in general!

~1/(

dx

dy

)




Using implicit differentiation for good:
Inverse functions.



The Derivative of y = Inx

Remember:
(1) y = €* has a slope through the point (0,1) of 1.

(2) The natural log is the inverse to €, so

y=Inx = & =x
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Does it make sense?




Examples

Calculate

1. d% In x2
2. L in(sin(x?))

3. d% log3(x)

[hint: log, x = nX]

Ina



Back to inverses

In the case where y = In(x), we used the fact that In(x) = f~1(x),
where f(x) = e*, and got
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Back to inverses

In the case where y =

In(x), we used the fact that In(x) = f~1(x),
where f(x) = e*, and got
d 1
= In(x) = ()
In general, calculating £ f~1(x):
(1) Rewrite y = f~1(x) as f(y) = x.
(2) Use implicit differentiation
d d 1
f'(y) * di 1 so Y _

d— Fly)  F(FIX)]
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Inverse trig functions

Two notations:

f(x f~1(x)

sin(x) sin~1(x) = arcsin(x)
cos(x) cos~1(x) = arccos(x)
tan(x) tan—!(x) = arctan(x)
sec(x) sec !(x) = arcsec(x)
csc(x) csc1(x) = arcesc(x)
cot(x) cot~!(x) = arccot(x)



Inverse trig functions

Two notations:

f(x) f~1(x)

sin(x) sin~1(x) = arcsin(x)
cos(x) cos~1(x) = arccos(x)
tan(x) tan—!(x) = arctan(x)
sec(x) sec !(x) = arcsec(x)
csc(x) csc1(x) = arcesc(x)
cot(x) cot~!(x) = arccot(x)

There are lots of points we know on these functions...

Examples:

1. Since sin(m/2) = 1, we have arcsin(1) = /2

2. Since cos(7/2) = 0, we have arccos(0) = 7/2

Etc...



In general:

arc__ (- ) takes in a ratio and spits out an angle:

arccos(a/c) =0
arcsin(b/c) =0
arctan(b/a) = 0



In general:

arc__ (- ) takes in a ratio and spits out an angle:

Y
b
A
a
cos(f) = a/c so arccos(a/c) =0
sin(d) = b/c so arcsin(b/c) =0
tan(0) = b/a so arctan(b/a) = 0

Domain problems:
sin(0) = 0, sin(m) = 0, sin(2m) =0, sin(37) =0,...

So which is the right answer to arcsin(0), really?
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Domain/range

y = arccot(x)

Domain: —o0 < x < 0 Range: 0 <y <m



Graphs




Back to Derivatives

Recall:

F(x) F(x)
sin(x) cos(x)
cos(x) | —sin(x)
tan(x) sec’(x)
sec(x) | sec(x)tan(x)
cse(x) | — ese(x) cot()

— csc?(x)



Back to Derivatives

Use implicit differentiation to calculate the derivatives of
1. arcsin(x)
2. arctan(x)

Use the rule

d 1
)= —— =
& )= FER)
to check your answers, and then to calculate the derivatives of the
other inverse trig functions:

1. diarccos(x)
2. Zarcsec(x)
3. Larcese(x)
" g

arccot(x)



Using implicit differentiation to calculate < arcsin(x)
X

‘ If y = arcsin(x) then x = sin(y). ‘

Take 2 of both sides of x = sin(y):

Left hand side: ix =1
dx
) - d . _ dy . dy
Right hand side: o sin(y) = cos(y)*& = cos(arcsm(x))*&
So
dy 1

dx  cos(arcsin(x))’




Simplifying cos(arcsin(x))
Call arcsin(x) = 6.
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Simplifying cos(arcsin(x))
Call arcsin(x) = 6.

sin(f) = x

1
0

Key: This is a simple triangle to write down
whose angle 6 has sin(f) = x
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Simplifying cos(arcsin(x))
Call arcsin(x) = 6.

sin(f) = x

So cos(arcsin(x)) = V1 — x?

1
So — arcsin(x) = = L

dx cos(arcsin(x)) /1 —x2




Calculating £ arctan(x).

We found that

%arctan(x) = seci(x) B <secl(><)>2

Simplify this expression using

arctan(x)

1




To simplify the rest, use the triangles

1 X

arccos(x) arcsec(x)

X 1

X

arccsc(x) arccot(x)

X



