Differentiation Rules

Warm up

Use the limit definition of the derivative to calculate the following derivatives.

$$
\begin{array}{ll}
\text { 1. } \frac{d}{d x}(5 x+2)=5 & \text { 4. } \frac{d}{d x}[(5 x+2)(3 x-1)]=30 x+1 \\
\text { 2. } \frac{d}{d x}(3 x-1)=3 & \text { 5. } \frac{d}{d x} 15 x^{2}=30 x \\
\text { 3. } \frac{d}{d x}[(5 x+2)+(3 x-1)]=8 & \text { 6. } \frac{d}{d x}\left(15 x^{2}+x-2\right)=30 x+1
\end{array}
$$

Remember the power rule says $\frac{d}{d x} x^{a}=a x^{a-1}$. Based on your calculations above, which of the following statements seem to be true and which seem to be false?
(a) If you multiply a function $f(x)$ by a number c and then take a derivative, you get the same thing as taking the derivative ' $f(x)$ and then multiplying by c. (try comparing 5 to the power rule)
(b) If you add two functions $f(x)$ and $g(x)$ and take a derivative, you get the same answer as taking the derivatives $f^{\prime}(x)$ and $g^{\prime}(x)$ and then adding those together. (try comparing 1-3, and then 6 to the power rule) true?
(c) If you multiply two functions $f(x)$ and $g(x)$ and take a derivative, you get the same answer as taking the derivatives $f^{\prime}(x)$ and $g^{\prime}(x)$ and then multiplying those together. (try comparing 1,2 , and 4)

$$
\text { 1. } \begin{aligned}
\frac{d}{d x}(5 x+2) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{5(x+h)+2^{2}-(5 x+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h}=5
\end{aligned}
$$

2. $\frac{d}{d x}(3 x-1)=\lim _{h \rightarrow 0} \frac{(3(x+h)-1)-(3 x-1)}{h}=\lim _{h \rightarrow 0} \frac{3 h^{2}}{h^{2}}=3$

$$
\text { 3. } \begin{aligned}
\frac{d}{d x}[(5 x+2)+(3 x-1)]=\frac{d}{d x}[8 x+1] & =\lim _{\substack{\text { simplify } \\
\text { first }}} \frac{8(x+h)+1-(8 x+1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 h}{h}=8
\end{aligned}
$$

4. $\frac{d}{d x}[(5 x+2)(3 x-1)]=\frac{d}{d x}\left(15 x^{2}+x-2\right)$

$$
=\lim _{h \rightarrow 0} \frac{15(x+h)^{2}+(x+h)-2-\left(15 x^{2}+x-2\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left(15 x^{2}+30 x h+15 h^{2}+x+h-2-15 x^{2}-x+2\right)
$$

$$
=\lim _{h \rightarrow \infty} 30 x+15 h+1=30 x+1
$$

$$
\text { 5. } \begin{aligned}
\frac{d}{d x}\left[15 x^{2}\right] & =\lim _{h \rightarrow 0} \frac{15(x+h)^{2}-15 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{15 x^{2}+30 x h+15 h^{2}-15 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} 30 x+\frac{15 h}{\frac{3}{0}}=30 x
\end{aligned}
$$

6. Notice $(5 x+2)(3 x-1)=15 x^{2}+x-2$,
so by $=4$, $\frac{d}{d x}\left(15 x^{2}+x-2\right)=30 x+1$.
Power rule: $\frac{d}{d x} 1=0, \frac{d}{d x} x=1, \frac{d}{d x} x^{2}=2 x$.
(a) Look at 5: We calculated $\frac{d}{d x} 15 x^{2}=30 x$, which is $15 * \frac{d}{d x} x^{2}$.
(b) In 1, we showed $\frac{d}{d x} 5 x+2=5$ in 2, we showed $\frac{d}{d x} 3 x-1=3$ In 3, we got
$\frac{d}{d x}(5 x+2)+(3 x-1)=8$, which is

$$
5+3
$$

(c) In 1, we got $\frac{d}{d x} 5 x+2=5$ and in 2 we got $\frac{d}{d x} 3 x-1=3$, bot in 4, we got

$$
\frac{d}{d x}(5 x+2)(3 x-1)=30 x+1
$$

which is not $5 * 3=15$.

Multiplying by constants: what's going on?
Take another look at $f(x)=15 x^{2}$. Before, we just expanded and canceled, and were surprised to find something nice happened:

$$
\begin{aligned}
\frac{d}{d x}\left[15 x^{2}\right] & =\lim _{h \rightarrow 0} \frac{15(x+h)^{2}-15 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{15 x^{2}+30 x h+15 h^{2}-15 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} 30 x+\frac{15 h}{3}=30 x
\end{aligned}
$$

Let's try again, only pay closer attention to that 15:

$$
\begin{aligned}
& \frac{d}{d x} 15 x^{2}=\lim _{h \rightarrow 0} \frac{15(x+h)^{2}-15 x^{2}}{h}=\lim _{h \rightarrow 0} 15 * \frac{\left((x+h)^{2}-x^{2}\right)}{h} \\
&=15 * \underbrace{\lim _{h \rightarrow 0}} \begin{aligned}
& \frac{(x+h)^{2}-x^{2}}{h} \\
& \text { one limit } \\
& \text { rules! }
\end{aligned}
\end{aligned}
$$

Let's try again, only pay closer attention to that 15:

$$
\begin{aligned}
& \frac{d}{d x} 15 x^{2}=\lim _{h \rightarrow 0} \frac{15(x+h)^{2}-15 x^{2}}{h}=\lim _{h \rightarrow 0} 15 * \frac{\left((x+h)^{2}-x^{2}\right)}{h} \\
&=15 * \underbrace{\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}} \\
& \begin{array}{c}
\text { one for } \\
\text { ovules! }
\end{array}
\end{aligned}
$$

But now suppose you have any differentiable function $f(x)$ and a number c. [Think: $f(x)=x^{2}$ and $c=15$]. Then in general

$$
\begin{aligned}
& \frac{d}{d x}(C * f(x))=\lim _{h \rightarrow 0} \frac{c * f(x+h)-c * f(x)}{h} \\
&=\lim _{h \rightarrow 0} c * \frac{(f(x+h)-f(x))}{h} \\
& \text { imit } \rightarrow \stackrel{*}{=} C * \lim _{h \rightarrow 0} \frac{(f(x+h)-f(x))}{h}=c * \frac{d}{d x} f(x)
\end{aligned}
$$

Multiplying by constants

Theorem (Scalars)

If $y=f(x)$ is a differentiable function and c is a constant, then

$$
\frac{d}{d x}(c * f(x))=c * \frac{d}{d x} f(x) .
$$

Example

Since $\frac{d}{d x} x^{2}=2 x$, we have $\frac{d}{d x} 15 x^{2}=15 * 2 x=30 x$.

Taking sums: what's going on?
Take another look at $f(x)=(5 x+2)+(3 x-1)$. Before, we just simplified first, and were surprised:

$$
\begin{aligned}
\frac{d}{d x}[(5 x+2)+(3 x-1)]=\frac{d}{d x}[8 x+1] & =\lim _{\substack{\text { simplifify } \\
\text { first }}} \frac{8(x+h)+1-(8 x+1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 h 6}{h}=8
\end{aligned}
$$

Let's try again, only pay closer attention to either part of the sum:

$$
\left.\begin{array}{rl}
\frac{d}{d x}((5 x+2)+(3 x-1)) & =\lim _{h \rightarrow 0} \frac{(5(x+h)+2)+(3(x+h)-1)-[5 x+2+3 x-1]}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{[(5(x+h)+2)-(5 x+2)]+((3(x+h)-1)-(3 x-1)]}{h}\right. \\
\text { because } \frac{\text { arb }}{c}=\frac{a}{c}+h
\end{array}=\lim _{h \rightarrow 0} \frac{[5(x+h)+2]-(5 x+2)}{h}+\frac{[3(x+h)-1]-(3 x-1)}{h}\right)
$$

Now, suppose you have any differentiable functions $f(x)$ and $g(x)$
[Think: $f(x)=5 x+2$ and $g(x)=3 x-1$]. Then in general

$$
\begin{aligned}
& \frac{\frac{d}{d x}[f(x)+g(x)]}{}=\lim _{h \rightarrow 0} \frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right] \\
& \text { (because } \\
& \left.\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}\right) \\
& \stackrel{\lim _{\text {rule: }}}{ } \quad=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
\end{aligned}
$$

Theorem (Sums)
If f and g are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

Example

Use the three rules we have so far

$$
\begin{gathered}
\frac{d}{d x} x^{a}=a x^{a-1}, \quad \frac{d}{d x} c * f(x)=c *\left(\frac{d}{d x} f(x)\right), \\
\text { and } \quad \frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
\end{gathered}
$$

to calculate the derivatives:

$$
\begin{aligned}
& \text { 1. } \frac{d}{d x}\left(x^{3}-7 x^{2}+6 x^{-15}\right) \\
& =\frac{d}{d x} x^{3}-7 * \frac{d}{d x} x^{2}+6 * \frac{d}{d x} x^{-15}=3 x^{2}-7 * 2 x+6(-15) x^{-16} \\
& \text { 2. } \frac{d}{d x}\left(\sqrt{x}+100 \sqrt[17]{x^{3}}-\frac{3}{x^{19}}\right)=\frac{d}{d x}\left(x^{1 / 2}+100 x^{3 / 17}-3 x^{-19}\right) \\
& =\frac{d}{d x} x^{1 / 2}+100 * \frac{d}{d x} x^{3 / 17}-3 * \frac{d}{d x} x^{-19} \\
& =\frac{1}{2} x^{-1 / 2}+100 * \frac{3}{17} x^{-14 / 17}-3 *(-19) x^{-20}
\end{aligned}
$$

[hint: rewrite everything from 2 as powers before you do anything]

Products: What's going on?

Take another look at $f(x)=(5 x+2) *(3 x-1)$. Before, we just simplified first, and were. . . not surprised:

$$
\begin{aligned}
& \frac{d}{d x}[(5 x+2)(3 x-1)]=\frac{d}{d x}\left(15 x^{2}+x-2\right) \\
& \quad=\lim _{h \rightarrow 0} \frac{15(x+h)^{2}+(x+h)-2-\left(15 x^{2}+x-2\right)}{h} \\
& \quad=\lim _{h \rightarrow 0} \frac{1}{h}\left(15 x^{2}+30 x h+15 h^{2}+x+h-2-15 x^{2}-x+2\right) \\
& =\lim _{h \rightarrow \infty} 30 x+15 h+1=30 x+1
\end{aligned}
$$

We didn't get that the derivative of the products is the product of the derivatives! So what is going on here?

To understand how to deal with products, we're going to have to unpack the formula

$$
\frac{d}{d x} f(x) * g(x)=\lim _{h \rightarrow 0} \frac{f(x+h) * g(x+h)-f(x) * g(x)}{h}
$$

$$
\begin{aligned}
f(x+h) * g(x+h)-f(x) * g(x)= & \left.\frac{f(x)}{g(x+h)-g(x)}\right\} \\
= & f(x) *(g(x+h)-g(x)) \\
& +g(x+h)^{*}(f(x+h)-f(x))
\end{aligned}
$$

$$
\begin{aligned}
f(x+h) * g(x+h)-f(x) * g(x)= & \frac{f(x)}{g(x+h)-g(x)} g(x+h) \\
= & f(x) *(g(x+h)-g(x)) \\
& +g(x+h)^{*}(f(x+h)-f(x))
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{d}{d x} f(x) \times g(x) & =\lim _{h \rightarrow 0} \frac{f(x+h) *}{} \frac{g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}(f(x) *[g(x+h)-g(x)]+g(x+h)[f(x+h)-f(x)])
\end{aligned}
$$

So

$$
\begin{aligned}
& \frac{d}{d x} f(x) * g(x)=\lim _{h \rightarrow 0} \frac{f(x+h) * g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}(f(x) *[g(x+h)-g(x)]+g(x+h)[f(x+h)-f(x)]) \\
& = \\
& \lim _{h \rightarrow 0}\left[f(x) *\left(\frac{g(x+h)-g(x)}{h}\right)+g(x+h) *\left(\frac{f(x+h)-f(x)}{h}\right)\right] \\
& = \\
& \left.\quad f(x) * \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right) g^{\prime}(x) \\
& \\
& \quad\left(\lim _{h \rightarrow 0} \frac{g(x+h)) *\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)}{}\right. \\
& =f(x) * g^{\prime}(x)+g(x) * f^{\prime}(x)
\end{aligned}
$$

Theorem (Products)

If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) .
$$

Example: Calculate $\frac{d}{d x}((5 x+2)(3 x-1))$:

$$
\begin{gathered}
\frac{d}{d x}((5 x+2)(3 x-1))=(5 x+2) \cdot 3+(3 x-1) \cdot 5=30 x+1 \odot \\
f^{\uparrow} g^{\uparrow}(9) \cdot g^{\prime}+g \cdot f^{\prime}
\end{gathered}
$$

Last rule: Compositions.

Example: Calculate $\frac{d}{d x}(5 x+2)^{100}$.
If $f(x)=x^{100}$ and $g(x)=5 x+2$, then $f(g(x))=(5 x+2)^{100}$. So since $f^{\prime}(x)=100 x^{99}$ and $g^{\prime}(x)=5$, if everything were right and just in the world, we would hope that

$$
\frac{d}{d x}(5 x+2)^{100}=100(5)^{99}
$$

But it's not!!

$$
\frac{d}{d x}(5 x+2)^{100} \neq 100(5)^{99}
$$

Theorem (Chain rule)
If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}((f \circ g)(x))=\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Last rule: Compositions.
Theorem (Chain rule)
If $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}((f \circ g)(x))=\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

We won't prove this identity, but we can kind of see where it's coming from:

$$
\begin{gathered}
\frac{d}{d x} f(g(x))=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} * \frac{g(x+h)-g(x)}{h} \\
\quad\} \\
\text { how } f \text { changes versus } \\
g(x) \text { (instead of } \\
\text { versus } x) \\
=f^{\prime}(g(x))
\end{gathered}
$$

Last rule: Compositions.
We won't prove this identity, but we can kind of see where it's coming from:

$$
\begin{gathered}
\frac{d}{d x} f(g(x))=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \times-\frac{g(x+h)-g(x)}{h} \\
\quad\} \\
\text { how f changes versus } \\
g(x) \text { (instead of } \\
\text { versus } x) \\
=f^{\prime}(g(x))
\end{gathered}
$$

In Leibniz notation:

$$
\frac{d}{d x} f(g(x))=\frac{d f}{d g} * \frac{d g}{d x}
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}(5 x+2)^{100}$.
Here,

$$
f(x)=x^{100} \quad \text { and } \quad g(x)=5 x+2
$$

So

$$
f^{\prime}(x)=100 x^{99} \quad \text { and } \quad g^{\prime}(x)=5
$$

and so

$$
\frac{d}{d x}(5 x+2)^{100}=100(5 x+2)^{99} \cdot 5
$$

Chain rule: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
Example
Calculate $\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)$.
Here,

$$
f(x)=\sqrt{x}=x^{1 / 2} \quad \text { and } \quad g(x)=x^{7}+5 .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad g^{\prime}(x)=7 x^{6}
$$

and so

$$
\frac{d}{d x}\left(\sqrt{x^{7}+5}\right)=\frac{1}{2 \sqrt{x^{7}+5}} \cdot 7 x^{6}
$$

Derivative rules

In summary, the derivative rules we have now are

1. Power rule: $\frac{d}{d x} x^{a}=a x^{a-1}$
2. Scalar rule: $\frac{d}{d x} c * f(x)=c * \frac{d}{d x} f(x)$
3. Sum rule: $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$
4. Product rule: $\frac{d}{d x}(f(x) * g(x))=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x)$
5. Chain rule: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) * g^{\prime}(x)$

Examples

Use everything you know to calculate the derivatives of

1. $\left(3 x^{2}+x+1\right)(5 x+1)$
2. $\left(3 x^{2}+x+1\right)(5 x+1)^{2}$
3. $(5 x+1)^{10}$
4. $\left(3 x^{2}+x+1\right)(5 x+1)^{10}$
5. $\frac{\sqrt{x^{2}-x}}{x+x^{-1}}$
6. $\frac{1}{\sqrt[3]{x^{2}+7 x^{1 / 2}}}$

Use the derivative rules (not limits) to prove the identities
a. Reciprocal identity: $\frac{d}{d x} \frac{1}{f(x)}=-\frac{f^{\prime}(x)}{f^{2}(x)}$
b. Quotient identity: $\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g^{2}(x)}$
c. Many products identity:

$$
\begin{aligned}
& \frac{d}{d x}(f(x) * g(x) * h(x) * k(x)) \\
&=(f(x) g(x) h(x)) * k^{\prime}(x)+(f(x) g(x) k(x)) * h^{\prime}(x) \\
&+(f(x) h(x) k(x)) * g^{\prime}(x)+(g(x) h(x) k(x)) * f^{\prime}(x)
\end{aligned}
$$

a. Reciprocal identity:

Rewrite $\frac{1}{f(x)}=(f(x))^{-1}$
So, using chain rule, $\frac{d}{d x} \frac{1}{f(x)}=\frac{d}{d x}(f(x))^{-1}$
b. Quotient ?le

$$
\begin{aligned}
& =-(f(x))^{-2} \times f^{\prime}(x) \\
& =-\frac{f^{\prime}(x)}{f^{2}(x)} \times
\end{aligned}
$$

Rewrite $f(x) / g(x)=f(x) *(g(x))^{-1}$
so

$$
\begin{aligned}
\frac{d}{d x} \frac{f(x)}{g(x)} & =\frac{d}{d x} f(x) *(g(x))^{-1} \\
& =f^{\prime}(x) *(g(x))^{-1} * f(x) *\left(-(g(x))^{-2}\right) * g^{\prime}(x) \\
& =\frac{f^{\prime}(x)}{g(x)} \times \frac{g(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{g^{2}(x)} \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x) .}
\end{aligned}
$$

c. Many Products identity:

$$
\begin{aligned}
& \frac{d}{d x}(f(x) *(g(x) * h(x) * k(x)))=f^{\prime}(x) * g(x) h(x) k(x) \\
& \quad+f(x) * \frac{d}{d x}(g(x) h(x) k(x)) \\
& \frac{d}{d x}(g(x)(h(x) * K(x)))=g^{\prime}(x) *(h(x) k(x))+g(x) * \frac{d}{d x}(h(x) k(x)) \\
& \frac{d}{d x}(h(x) * K(x))=h^{\prime}(x) K(x)+K^{\prime}(x) h(x) .
\end{aligned}
$$

put it back together...

Calculate $\frac{d}{d x}$ of ...
(1) $\left(3 x^{2}+x+1\right)(5 x+1)$

Two ways:
(a) Expand first.

$$
\begin{array}{r}
\left(3 x^{2}+x+1\right)(5 x+1)=15 x^{3}+8 x^{2}+6 x+1 \\
\left\{\frac{d}{d x}\right. \\
45 x^{2}+16 x+6
\end{array}
$$

(b) product rule:

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1) \\
& \quad=\left(3 x^{2}+x+1\right) \cdot 5+(5 x+1)(6 x+1)
\end{aligned}
$$

t "done" here.
but to compare to (a) ...

$$
\begin{aligned}
& =15 x^{2}+5 x+5+30 x^{2}+11 x+1 \\
& =45 x^{2}+16 x+6 \quad \ddot{ }
\end{aligned}
$$

(2) $\quad 4=\left(3 x^{2}+x+1\right)(5 x+1)^{2}$

Lots of ways, including:
(a) Expand all the way:

$$
\left(3 x^{2}+x+1\right)(5 x+1)^{2}=75 x^{4}+55 x^{3}+38 x^{2}+11 x+1
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =4.75 x^{3}+3.55 x^{2}+2.38 x+11 \\
& =300 x^{3}+165 x^{2}+76 x+11
\end{aligned}
$$

(b) Expand the $(5 x+1)^{2}$:

$$
\begin{gathered}
\left(3 x^{2}+x+1\right)(5 x+1)^{2}=\left(3 x^{2}+x+1\right)\left(25 x^{2}+10 x+1\right) \\
\left\{\frac{d}{d x}\right.
\end{gathered}
$$

product rule:

$$
\begin{aligned}
&\left(3 x^{2}+x+1\right)(50 x+10)+\left(25 x^{2}+10 x+1\right)(6 x+1) \\
& \text { 世"done" } \\
&= 150 x^{3}+80 x^{2}+60 x+10 \\
&+150 x^{3}+85 x^{2}+16 x+1 \\
&= 300 x^{3}+165 x^{2}+76 x+1 \text { ル }
\end{aligned}
$$

(c) two product rules:

$$
\begin{aligned}
\frac{d}{d x}(& \left.\left(3 x^{2}+x+1\right)(5 x+1)\right)(5 x+1) \\
& =\underbrace{\left(3 x^{2}+x+1\right)(5 x+1) \cdot 5}+(5 x+1) \cdot \underbrace{\frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1)} \\
& =75 x^{3}+40 x^{2}+30 x+5+(5 x+1)\left[\left(3 x^{2}+x+1\right) \cdot 5+(5 x+1)(6 x+1)\right] \\
& =\cdots=300 x^{3}+165 x^{2}+76 x+1
\end{aligned}
$$

(d) My favorite:
product and chain sue:

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}+x+1\right)(5 x+1)^{2} \\
&=\left(3 x^{2}+x+1\right) \cdot 2(5 x+1)^{1} \cdot 5 \\
&+(5 x+1)^{2} \cdot(6 x+1) \\
&= 150 x^{3}+80 x^{2}+60 x+10 \\
&+150 x^{3}+85 x^{2}+16 x+1 \\
&= 300 x^{3}+165 x^{2}+76 x+11 \quad \text { U }
\end{aligned}
$$

(3) $y=(5 x+1)^{10}$

Lots of ways for example...
(a) Be obnoxious and expand first:

$$
\begin{aligned}
&(5 x+1)^{10}=9,765,625 x^{10}+19,531,250 x^{9} \\
&+17,578,125 x^{8}+9,375,000 x^{7} \\
&+3,281,250 x^{6}+787,500 x^{5} \\
&+131,250 x^{4}+15,000 x^{3}+1125 x^{2} \\
&+50 x+1
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x}= & 97,656,250 x^{9}+175,781,250 x^{8} \\
& +140,625,000 x^{7}+65,625,000 x^{6} \\
& +19,687,500 x^{5}+3,937,500 x^{4} \\
& +525,000 x^{3}+45,000 x^{2}+2250 x+50
\end{aligned}
$$

(b) Chain rule:

$$
\frac{d}{d x}(5 x+1)^{10}=10\left(5 x+13^{9} \leqslant 5\right.
$$

(which happens to be if you expand)
(4) $\left(3 x^{2}+x+1\right)(5 x+1)^{10}$

Product, then chain:

$$
\begin{gathered}
\left(3 x^{2}+x+1\right) \cdot \frac{d}{d x}(5 x+1)^{10}+(5 x+1)^{10} \frac{d}{d x}\left(3 x^{2}+x+1\right) \\
=\left(3 x^{2}+x+1\right) \cdot 10(5 x+1)^{9} \cdot 5 \\
+(5 x+1)^{10}(6 x+1) .
\end{gathered}
$$

七 "done",
but notice there's a quick rout to factorization:
pull out $(5 x+1)^{9}$ that the two terms have in common:

$$
\begin{aligned}
y & =(5 x+1)^{9}\left(50\left(3 x^{2}+x+1\right)+(5 x+1)(6 x+1)\right) \\
& =(5 x+1)^{9}\left(150 x^{2}+50 x+50+30 x^{2}+11 x+1\right) \\
& =(5 x+1)^{9}(\underbrace{180 x^{2}+66 x+51}_{\text {no real roots! }})
\end{aligned}
$$

(5) $\frac{\sqrt{x^{2}-x}}{x+x^{-1}}$

Many ways, including...
(a) Quotient rule: $y=\frac{f}{g}$
where

$$
f=\left(x^{2}-x\right)^{1 / 2} \quad \therefore \quad g=x+x^{-1}
$$

so

$$
f^{\prime}=\frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \quad: \quad g^{\prime}=1-x^{-2}
$$

so

$$
\frac{d y}{d x}=\frac{f^{\prime} g-g^{\prime} f(2 x-1) *}{g^{2}}=\frac{v \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \cdot\left(x+x^{-1}\right)-\left(1-x^{-2}\right)\left(x^{2}-x\right)^{1 / 2}}{\left(x+x^{-1}\right)^{2}}
$$

C. "done"
(b) product rule: $f \cdot(g)^{-1}$
where

$$
f=\left(x^{2}-x\right)^{1 / 2} \quad: \quad g=x+x^{-1}
$$

$$
\begin{aligned}
\frac{d}{d x} f \cdot(g)^{-1}= & f \cdot \frac{d}{d x}(g)^{-1}+(g)^{-1} \frac{d}{d x} f \\
= & \left(x^{2}-x\right)^{1 / 2} \cdot\left(-\left(x+x^{-1}\right)^{-2} \cdot\left(1-x^{-2}\right)\right) \\
& +\left(x+x^{-1}\right)^{-1} \cdot \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2} \leftarrow \text { "done" }^{\prime \prime} \\
= & \frac{\left(x^{2}-x\right)^{1 / 2}\left(1-x^{2}\right)}{\left(x+x^{-1}\right)^{2}}+\frac{\left(x+x^{-1}\right) \cdot \frac{1}{2}\left(x^{2}-x\right)^{-1 / 2}}{\left(x+x^{-1}\right)^{2}} \leftarrow \text { same }
\end{aligned}
$$

(6) $\frac{1}{\sqrt[3]{x^{2}+7 x^{1 / 2}}}$

Many ways, including...
(a) reciprocal rule: $\frac{1}{f}$ where $f=\left(x^{2}+7 x^{1 / 2}\right)^{1 / 3}$
since $f^{\prime}=\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-2 / 3} \cdot\left(, 2 x+7 / 2 x^{-1 / 2}\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-2 / 3}\left(2 x+\frac{7}{2} x^{-1 / 2}\right)}{\left(\sqrt[3]{x^{2}+7 x^{1 / 2}}\right)^{2}} \\
& =-\frac{2 x+\frac{7}{2} x^{-1 / 2}}{3\left(x^{2}+7 x^{1 / 2}\right)^{4 / 3}} \quad \text { \& nicer. }
\end{aligned}
$$

(b) Rewrite first, then chain role:

$$
y=\left(x^{2}+7 x^{1 / 2}\right)^{-1 / 3}
$$

so

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{1}{3}\left(x^{2}+7 x^{1 / 2}\right)^{-4 / 3}\left(2 x+\frac{7}{2} x^{-1 / 2}\right) \\
& =-\frac{2 x+7 / 2 x^{-1 / 2}}{3\left(x^{2}+7 x^{1 / 2}\right)^{4 / 3}},
\end{aligned}
$$

just as before!

