Differentiation Rules

Warm up

Use the limit definition of the derivative to calculate the following derivatives.

1.
$$\frac{d}{dx}(5x+2) = 5$$

2.
$$\frac{d}{dx}(3x-1) = 3$$

3.
$$\frac{d}{dx}[(5x+2)+(3x-1)] = 8$$

4.
$$\frac{d}{dx}[(5x+2)(3x-1)] = 30x + 1$$

5.
$$\frac{d}{dx}15x^2 = 30x$$

6.
$$\frac{d}{dx}(15x^2+x-2) = 30x+1$$

Remember the power rule says $\frac{d}{dx}x^a = ax^{a-1}$.

Based on your calculations above, which of the following statements seem to be true and which seem to be false?

- (a) If you multiply a function f(x) by a number c and then take a derivative, you get the same thing as taking the derivative f(x) and then multiplying by c. (try comparing 5 to the power rule) true?
- (b) If you add two functions f(x) and g(x) and take a derivative, you get the same answer as taking the derivatives f'(x) and g'(x) and then adding those together. (try comparing 1-3, and then 6 to the power rule) true?
- (c) If you multiply two functions f(x) and g(x) and take a derivative, you get the same answer as taking the derivatives f'(x) and g'(x) and then multiplying those together. (try comparing 1, 2, and 4) false

1.
$$\frac{d}{dx}(5x+2) = \lim_{h\to 0} f(x+h) - f(x) = \lim_{h\to 0} 5(x+h) + 2 - (5x+2)$$

2.
$$\frac{d}{dx}(3x-1) = \lim_{h\to 0} (3(x+h)-1) - (3x-1) = \lim_{h\to 0} 3k = 3$$

3.
$$\frac{d}{dx} \left[(5x+2) + (3x-1) \right] = \frac{d}{dx} \left[8x + 1 \right] = \lim_{h \to 0} \frac{8(x+h) + 1 - (8x+1)}{h}$$

$$= \lim_{h \to 0} \frac{8k}{h} = \frac{8}{10}$$

$$4.\frac{d}{dx}[(5x+2)(3x-1)] = \frac{d}{dx}(15x^2 + x - 2)$$

5.
$$\frac{d}{dx} [15x^{2}] = \lim_{h \to 0} \frac{15(x+h)^{2}-15x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{15x^{2}+30xh+15h^{2}-15x^{2}}{h}$$

$$= \lim_{h \to 0} 30x+15h = 30x$$
6. Notice $(5x+2)(3x-1) = 15x^{2}+x-2$,
$$= 15x^{2}+x-2$$
,
$$= 15x^{2}+x-2$$

Power rule: & 1=0, & x=1, & x2=2x.

(a) Look at 5: We calculated 数 15x2=30x, which is 15* 数 x2.

(b) In 1, we showed £5x+2=5In 2, we showed £3x-1=3In 3, we got $\frac{1}{2}(5x+2)+(3x-1)$

 $\frac{d}{dx}(5x+2)+(3x-1)=8$, which is 5+3.

(c) In 1, we got $\frac{d}{dx} = 5 \times +2 = 5$ and in 2 we got $\frac{d}{dx} = 3 \times -1 = 3$, but in 4, we got $\frac{d}{dx} = (5 \times +2)(3 \times -1) = 30 \times +1$ which is not $5 \times 3 = 15$.

Multiplying by constants: what's going on?

Take another look at $f(x) = 15x^2$. Before, we just expanded and canceled, and were surprised to find something nice happened:

$$\frac{d}{dx} [15x^{2}] = \lim_{h \to 0} \frac{15(x+h)^{2} - 15x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{15x^{2} + 30xh + 15h^{2} - 15x^{2}}{h}$$

$$= \lim_{h \to 0} 30x + \frac{15h}{3} = 30x$$

Let's try again, only pay closer attention to that 15:

$$\frac{d}{dx} |5x|^2 = \lim_{h \to 0} |5(x+h)^2 - |5x|^2 = \lim_{h \to 0} |5*(x+h)^2 - x^2)$$

$$= \lim_{h \to 0} (x+h)^2 - x^2$$

Let's try again, only pay closer attention to that 15:

$$\frac{d}{dx} | 5x^2 = \lim_{h \to 0} \frac{15(x+h)^2 - 15x^2}{h} = \lim_{h \to 0} \frac{15*(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

But now suppose you have any differentiable function f(x) and a number c. [Think: $f(x) = x^2$ and c = 15]. Then in general

$$\frac{d}{dx}(C*f(xx)) = \lim_{N \to 0} \frac{C*f(x+h) - C*f(x)}{h}$$

$$= \lim_{N \to 0} C*\frac{(f(x+h) - f(x))}{h}$$

$$= \lim_{N \to 0} C*\frac{(f(x+h) - f(x))}{h} = C*\frac{d}{dx}f(x)$$

Multiplying by constants

Theorem (Scalars)

If y = f(x) is a differentiable function and c is a constant, then

$$\frac{d}{dx}(c*f(x))=c*\frac{d}{dx}f(x).$$

Example

Since
$$\frac{d}{dx}x^2 = 2x$$
, we have $\frac{d}{dx}15x^2 = 15 * 2x = 30x$.

Taking sums: what's going on?

Take another look at f(x) = (5x + 2) + (3x - 1). Before, we just simplified first, and were surprised:

$$\frac{d}{dx}\left[(5x+2)+(3x-1)\right] = \frac{d}{dx}\left[8x+1\right] = \lim_{h\to 0} \frac{8(x+h)+1-(8x+1)}{h}$$

$$= \lim_{h\to 0} \frac{8k}{k} = \boxed{8}$$

Let's try again, only pay closer attention to either part of the sum:

$$\frac{d}{dx}((5x+2)+(3x-1)) = \lim_{h\to 0} \frac{(5(x+h_1)+2)+(3(x+h_1)-1)-[5x+2+3x-1]}{h}$$

$$= \lim_{h\to 0} \left[\frac{(5(x+h_1)+2)-(5x+2)}{h} + \frac{(3(x+h_1)-1)-(3x-1)}{h} \right]$$
because $\frac{a+b}{c} = \frac{a+c}{c} = \lim_{h\to 0} \frac{[5(x+h_1)+2]-(5x+2)}{h} + \frac{[3(x+h_1)-1]-(3x-1)}{h}$

$$= \lim_{h\to 0} \frac{(5(x+h_1)+2)-(5x+2)}{h} + \lim_{h\to 0} \frac{(3(x+h_1)-1)-(3x-1)}{h}$$

$$= \frac{d}{dx}(5x+2) + \frac{d}{dx}(3x-1)$$

Now, suppose you have any differentiable functions f(x) and g(x)

[Think:
$$f(x) = 5x + 2$$
 and $g(x) = 3x - 1$]. Then in general
$$\frac{d}{dx} \left[f(x) + g(x) \right] = \lim_{h \to 0} \left(\frac{f(x+h) + g(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right)$$

$$= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right] \xrightarrow{g(x+h) - g(x)}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

Theorem (Sums)

If f and g are differentiable functions, then

 $= \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$

$$\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$$

Example

Use the three rules we have so far

$$\frac{d}{dx}x^{a} = ax^{a-1}, \quad \frac{d}{dx}c * f(x) = c * \left(\frac{d}{dx}f(x)\right),$$
and
$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

to calculate the derivatives:

1.
$$\frac{d}{dx}(x^3 - 7x^2 + 6x^{-15})$$

= $\frac{d}{dx}x^3 - 7*\frac{d}{dx}x^2 + 6*\frac{d}{dx}x^{-15} = 3x^2 - 7*2x + 6(-15)x^{-16}$

2.
$$\frac{d}{dx} \left(\sqrt{x} + 100 \sqrt[17]{x^3} - \frac{3}{x^{19}} \right) = \frac{d}{dx} \left(x^{1/2} + 100 x^{3/17} - 3 x^{-19} \right)$$
$$= \frac{d}{dx} x^{1/2} + 100 * \frac{d}{dx} x^{3/17} - 3 * \frac{d}{dx} x^{-19}$$
$$= \left[\frac{1}{2} x^{-1/2} + 100 * \frac{3}{17} x^{-14/17} - 3 * (-19) x^{-20} \right]$$

[hint: rewrite everything from 2 as powers before you do anything]

Products: What's going on?

Take another look at f(x) = (5x + 2) * (3x - 1). Before, we just simplified first, and were...not surprised:

$$\frac{d}{dx} \left[(5x+2)(3x-1) \right] = \frac{d}{dx} \left(15x^2 + x - 2 \right)$$

$$= \lim_{h \to 0} \frac{15(x+h)^2 + (x+h) - 2 - (15x^2 + x - 2)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(15x^2 + 30xh + 15h^2 + x + h - 2 - 15x^2 - x + 2 \right)$$

$$= \lim_{h \to 0} 30x + 15h + 1 = 30x + 1$$

We *didn't* get that the derivative of the products is the product of the derivatives! So what *is* going on here?

To understand how to deal with products, we're going to have to unpack the formula

$$\frac{d}{dx}f(x)*g(x) = \lim_{h\to 0}\frac{f(x+h)*g(x+h) - f(x)*g(x)}{h}$$

$$f(x+h) * g(x+h) - f(x) * g(x) = \begin{cases} f(x) \\ g(x+h) - g(x) \end{cases} + \begin{cases} g(x+h) \\ f(x+h) - f(x) \end{cases}$$

$$= f(x) * (g(x+h) - g(x))$$

$$+ g(x+h) * (f(x+h) - f(x))$$

$$= f(x) * (g(x+h) - g(x))$$

$$+ g(x+h) * (f(x+h) - f(x))$$

$$(x)*g(x) = \lim_{n \to 0} \frac{f(x+n)*g(x+n) - f(x)g(x)}{n}$$

$$= \lim_{n \to 0} \frac{1}{n} \left(f(x)*[g(x+n)-g(x)] + g(x+n)[f(x+n)-f(x)] \right)$$

Theorem (Products)

If f(x) and g(x) are differentiable functions, then

$$\frac{d}{dx}(f(x)\cdot g(x)) = f(x)\cdot g'(x) + g(x)\cdot f'(x).$$

Example: Calculate $\frac{d}{dx}((5x+2)(3x-1))$:

$$\frac{d}{dx}((5x+2)(3x-1)) = (5x+2) \cdot 3 + (3x-1) \cdot 5 = \boxed{30x+1} \odot$$

$$f \uparrow \qquad g \uparrow \qquad \qquad f \cdot g' + g \cdot f'$$

Last rule: Compositions.

Example: Calculate $\frac{d}{dx}(5x+2)^{100}$.

If $f(x) = x^{100}$ and g(x) = 5x + 2, then $f(g(x)) = (5x + 2)^{100}$.

So since $f'(x) = 100x^{99}$ and g'(x) = 5, if everything were right and just in the world, we would hope that

$$\frac{d}{dx}(5x+2)^{100} = 100(5)^{99}$$

But it's not!!

$$\frac{d}{dx}(5x+2)^{100} \neq 100(5)^{99}$$

Theorem (Chain rule)

If f(x) and g(x) are differentiable functions, then

$$\frac{d}{dx}((f\circ g)(x))=\frac{d}{dx}(f(g(x)))=f'(g(x))\cdot g'(x).$$

Last rule: Compositions.

Theorem (Chain rule)

If f(x) and g(x) are differentiable functions, then

$$\frac{d}{dx}((f\circ g)(x))=\frac{d}{dx}\big(f(g(x))\big)=f'(g(x))\cdot g'(x).$$

We won't prove this identity, but we can kind of see where it's coming from:

$$\frac{d}{dx} f(g(x)) = \lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{n}$$

$$= \lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

$$\lim_{N \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{n}$$

Last rule: Compositions.

We won't prove this identity, but we can kind of see where it's coming from:

$$\frac{d}{dx} f(g(x)) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$\lim_{h \to 0} \frac{f(g(x)) - g(x)}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

In Leibniz notation:

$$\frac{d}{dx}f(g(x)) = \frac{df}{dg} * \frac{dg}{dx}$$

Chain rule:
$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x).$$

Example

Calculate $\frac{d}{dx}(5x+2)^{100}$.

$$f(x) = x^{100}$$
 and $g(x) = 5x + 2$.

$$f'(x) = 100x^{99}$$
 and $g'(x) = 5$

and so

$$\frac{d}{dx}(5x+2)^{100}=100(5x+2)^{99}\cdot 5.$$

Chain rule: $\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$.

Example

Calculate $\frac{d}{dx} \left(\sqrt{x^7 + 5} \right)$.

Here,

$$f(x) = \sqrt{x} = x^{1/2}$$
 and $g(x) = x^7 + 5$.

So

$$f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$
 and $g'(x) = 7x^6$

and so

$$\frac{d}{dx}(\sqrt{x^7+5}) = \frac{1}{2\sqrt{x^7+5}} \cdot 7x^6.$$

Derivative rules

In summary, the derivative rules we have now are

- 1. Power rule: $\frac{d}{dx}x^a = ax^{a-1}$
- 2. Scalar rule: $\frac{d}{dx}c * f(x) = c * \frac{d}{dx}f(x)$
- 3. Sum rule: $\frac{d}{dx}(f(x)+g(x))=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)$
- 4. Product rule: $\frac{d}{dx}(f(x)*g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$
- 5. Chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x)) * g'(x)$

Examples

Use everything you know to calculate the derivatives of

1.
$$(3x^2 + x + 1)(5x + 1)$$

2.
$$(3x^2 + x + 1)(5x + 1)^2$$

3. $(5x + 1)^{10}$

4.
$$(3x^2 + x + 1)(5x + 1)^{10}$$

Use the derivative rules (not limits) to prove the identities

a. Reciprocal identity:
$$\frac{d}{dx} \frac{1}{f(x)} = -\frac{f'(x)}{f^2(x)}$$

b. Quotient identity:
$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$$

c. Many products identity:

$$\frac{d}{dx}(f(x) * g(x) * h(x) * k(x))
= (f(x)g(x)h(x)) * k'(x) + (f(x)g(x)k(x)) * h'(x)
+ (f(x)h(x)k(x)) * g'(x) + (g(x)h(x)k(x)) * f'(x)$$

5. $\frac{\sqrt{x^2-x}}{x+x^{-1}}$

6. $\frac{1}{\sqrt[3]{x^2 + 7\sqrt{1/2}}}$

$$= - (f(x)) + f(x)$$
(chain rule)
$$= - \frac{f'(x)}{f^{2}(x)}$$

6. Quotient rule

50

$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{d}{dx} f(x) * (g(x))^{-1}$$

=
$$\frac{f'(x)}{g(x)} = \frac{g(x)}{g(x)} - \frac{g(x)g'(x)}{g^2(x)}$$

c. Many Products identity:

put it back together ...

Calculate dax of ...

() (3x2+x+1)(5x+1)

Two ways:

@ expand first.

(3x2+x+1)(5x+1) = 15x3+8x2+6x+1

\$ 9x

45 x2 + 16 x + 6

6 product rule:

 $\frac{q^{\times}}{q} \left(3 \times_5 + \times + I \right) \left(2 \times + I \right)$

 $= (3x^2 + x + 1) \cdot 5 + (5x + 1) (6x + 1)$

I "done" here.

but to compare to @ ...

= 15x2+5x+5 + 30x2+11x +1

= 45 x2 + 16x + 6 "

2
$$y = (3x^2 + x + 1)(5x + 1)^2$$

Lota of ways, in cluding:

(3x^2 + x + 1)(5x + 1)^2 = 75x^4 + 55x^3 + 38x^2 + 11x + 1

So $\frac{dy}{dx} = 4.75x^3 + 3.55x^2 + 2.38x + 11$

= $300x^3 + 165x^2 + 76x + 11$

(3x^2 + x + 1)(5x + 1)^2 = $(3x^2 + x + 1)(25x^2 + 10x + 1)$

Product role:

(3x^2 + x + 1)(50x + 10) + $(25x^2 + 10x + 1)(6x + 1)$

1 "done"

= $150x^3 + 86x^2 + 60x + 10$

+ $150x^3 + 85x^2 + 16x + 1$

= $300x^3 + 165x^2 + 76x + 1$

@ two product rules:

$$\frac{d}{dx} \left((3x^{2} + x + 1)(5x + 1) + (5x + 1) \cdot \frac{d}{dx} \left((3x^{2} + x + 1)(5x + 1) \cdot \frac{d}{dx} \left((3x^{2} + x + 1)(5x + 1) \right) \right)$$

$$= (3x^{2} + x + 1)(5x + 1) \cdot 5 + (5x + 1) \cdot \frac{d}{dx} \left((3x^{2} + x + 1)(5x + 1) \right)$$

$$= (3x^{2} + x + 1)(5x + 1) \cdot 5 + (5x + 1) \cdot (5x + 1) \cdot (5x + 1) \cdot (6x + 1)$$

$$= (3x^{2} + x + 1)(5x + 1) \cdot 5 + (5x + 1) \cdot (5x + 1) \cdot (6x + 1)$$

$$= (3x^{2} + x + 1)(5x + 1) \cdot (5x + 1) \cdot (5x + 1) \cdot (5x + 1) \cdot (5x + 1) \cdot (6x + 1)$$

$$= (3x^{2} + x + 1)(5x + 1) \cdot (5x +$$

(d) My favorite:

product and chain rule:

d (3x2+x+1) (5x+1)2

=
$$(3x^2+x+1) \cdot 2(5x+1)^{\frac{1}{2}} \cdot 5$$

+ $(5x+1)^2 \cdot (6x+1)$ done

$$= 150 \times^{3} + 80 \times^{2} + 60 \times + 10$$

$$+ 150 \times^{3} + 85 \times^{2} + 16 \times + 1$$

$$= 300 \times^{3} + 8165 \times^{2} + 76 \times + 11$$

3 4= (5x+1)10

Lots of ways, for example...

@ Be obnoxious and expand first:

 $(5x+1)^{10}$ = 9,765, 625 x^{10} + 19,531, 250 x^{9} + 17,578,125 x^{8} + 9,375,000 x^{7} + 3,281,250 x^{6} + 787,500 x^{5} + 131,250 x^{9} + 15,000 x^{3} + 1125 x^{2}

 $\frac{d_{4}}{dx} = 97,656,250 \times 9 + 175,781,250 \times 8$ $+ 140,625,000 \times 7 + 65,625,000 \times 6$ $+ 19,687,500 \times 5 + 3,937,500 \times 9$ $+ 525,000 \times 3 + 45,000 \times 2 + 2250 \times +50$

6 chain role:

(which happens to be

if you expand)

(3x2+x+1) (5x+1)10

Product, then chain: $(3x^{2}+x+1) \cdot \frac{d}{dx} (5x+1)^{10} + (5x+1)^{10} \frac{d}{dx} (3x^{2}+x+1)$ $= (3x^{2}+x+1) \cdot 10 (5x+1)^{9} \cdot 5$ $+ (5x+1)^{10} (6x+1)$ t "done",but notice there's a
guick rout to factorization

but notice there's a guick rout to factorization:

Pull out (5x+1)9 that the two

terms have in common:

 $= (5x+1)^{9} (50(3x^{2}+x+1)+(5x+1)(6x+1))$ $= (5x+1)^{9} (150x^{2}+50x+50+30x^{2}+11x+1)$ $= (5x+1)^{9} (180x^{2}+66x+51)$ $= (5x+1)^{9} (180x^{2}+66x+51)$

$$\frac{\sqrt{x^2-x}}{x+x^{-1}}$$

Many ways, including ...

@ Quotient rule:
$$y = \frac{f}{g}$$
 where

where
$$f = (x^2 - x)^{1/2}$$
 : $g = x + x^{-1}$

$$f' = \frac{1}{a}(x^2 - x)^{-1/2}$$
 $f' = 1 - x^{-2}$

$$\frac{dy}{dx} = \frac{f'g - g'f}{g^2} = v \frac{1}{a} (x^2 - x)^{1/2} (x + x^{-1}) - (1 - x^{-2})(x^2 - x)^{1/2}$$

$$(x + x^{-1})^2$$

C "done"

$$\frac{d}{dx} f \cdot (g)^{-1} = f \cdot \frac{d}{dx} (g)^{-1} + (g)^{-1} \frac{d}{dx} f$$

$$= (x^{2} - x)^{1/2} \cdot (-(x + x^{-1})^{-2} \cdot (1 - x^{2}))$$

$$+ (x + x^{-1})^{-1} \cdot \frac{1}{2} (x^{2} - x)^{-1/2} \qquad \text{"done} "$$

$$= -(x^{2} - x)^{1/2} (1 - x^{2}) + (x + x^{-1})^{-1} \frac{1}{2} (x^{2} - x)^{-1/2} \qquad \text{Same} \qquad \text{as} \quad \text{as} \quad$$

Many ways, including ...

$$\frac{dy}{dx} = -\frac{\frac{1}{3}(x^2 + 7x^{1/2})^{-2/3}(2x + \frac{7}{2}x^{-1/2})}{\left(\sqrt[3]{x^2 + 7x^{1/2}}\right)^2}$$

"done"

$$3(x^{2} + 7x'^{12})^{4/3} \in \text{nicer.}$$

(6) Rewrite first, then chain rule.

So
$$\frac{dy}{dx} = -\frac{1}{3} \left(x^2 + 7 x^{1/2} \right)^{-4/3} \left(2x + \frac{7}{8} x^{-1/2} \right)$$

$$= -\frac{2 \times + \frac{7}{2} \times^{-1/2}}{3 \left(\times^{2} + 7 \times^{1/2} \right)^{4/3}}$$

just as before!