Limits

From last time...

Let $y=f(t)$ be a function that gives the position at time t of an object moving along the y-axis. Then

$$
\begin{aligned}
\text { Ave vel }\left[t_{1}, t_{2}\right] & =\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}} \\
\operatorname{Velocity}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
\end{aligned}
$$

We need to be able to take limits!

From last time...

Let $y=f(t)$ be a function that gives the position at time t of an object moving along the y-axis. Then

$$
\begin{aligned}
& \text { Ave vel }\left[t_{1}, t_{2}\right]=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \operatorname{Velocity}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} .
\end{aligned}
$$

We need to be able to take limits!

From last time...

Let $y=f(t)$ be a function that gives the position at time t of an object moving along the y-axis. Then

$$
\begin{aligned}
& \text { Ave vel }\left[t_{1}, t_{2}\right]=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \operatorname{Velocity}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} . \\
& \underset{\sim}{c}
\end{aligned}
$$

We need to be able to take limits!

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

Limit of a Function - Definition

We say that a function f approaches the limit L as x approaches a,

$$
\text { written } \quad \lim _{x \rightarrow a} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a.

i.e. If you need Δy to be smaller, you only need to make Δx smaller (Δ means "change")

One-sided limits

Right-handed limit: $L_{r}=\lim _{x \rightarrow a^{+}} f(x)$
if $f(x)$ gets closer to L_{r} as x gets closer to a from the right
Left-handed limit: $L_{\ell}=\lim _{x \rightarrow a^{-}} f(x)$
if $f(x)$ gets closer to L_{ℓ} as x gets closer to a from the left

One-sided limits

Right-handed limit: $L_{r}=\lim _{x \rightarrow a^{+}} f(x)$
if $f(x)$ gets closer to L_{r} as x gets closer to a from the right
Left-handed limit: $L_{\ell}=\lim _{x \rightarrow a^{-}} f(x)$
if $f(x)$ gets closer to L_{ℓ} as x gets closer to a from the left

Theorem

The limit of f as $x \rightarrow a$ exists if and only if both the right-hand and left-hand limits exist and have the same value, i.e.

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=L \text { and } \lim _{x \rightarrow a^{+}} f(x)=L
$$

Examples

Examples

$$
\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0 \quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2 \quad \lim _{x \rightarrow 0} \frac{1}{x} \text { is undefined }
$$

Theorem

If $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$ both exist, then

1. $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=A+B$
2. $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=A-B$
3. $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$
4. $\lim _{x \rightarrow a}(f(x) / g(x))=\lim _{x \rightarrow a} f(x) / \lim _{x \rightarrow a} g(x)=A / B(B \neq$ $0)$.

In short: to take a limit
Step 1: Can you just plug in? If so, do it.
Step 2: If not, is there some sort of algebraic manipulation (like cancellation) that can be done to fix the problem? If so, do it. Then plug in.
Step 3: Learn some special limit to fix common problems. (Later)
If in doubt, graph it!

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}$
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$
3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$

If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(x)$ is undefined at $x=1$.
3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$

If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(x)$ is undefined at $x=1$.
However, so long as $x \neq 1$,

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1
$$

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$

If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(x)$ is undefined at $x=1$.
However, so long as $x \neq 1$,

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1
$$

So

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=1+1=2
$$

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

Examples

1. $\lim _{x \rightarrow 2} \frac{x-2}{x+3}=0$ because if $f(x)=\frac{x-2}{x+3}$, then $f(2)=0$.
2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \rightarrow 0$

If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(x)$ is undefined at $x=1$.
However, so long as $x \neq 1$,

$$
f(x)=\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1
$$

So

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=1+1=2
$$

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Multiply top and bottom by the conjugate:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}=\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right)
$$

Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Multiply top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \quad \text { since }(a-b)(a+b)=a^{2}-b^{2}
\end{aligned}
$$

Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Multiply top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \quad \text { since }(a-b)(a+b)=a^{2}-b^{2} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+2}+\sqrt{2})}
\end{aligned}
$$

Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Multiply top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \quad \text { since }(a-b)(a+b)=a^{2}-b^{2} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+2}+\sqrt{2})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+2}+\sqrt{2}}
\end{aligned}
$$

Examples

3. $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} \rightarrow 0$, so again, $f(x)$ is undefined at a.

Multiply top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+2}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{x+2}+\sqrt{2}}{\sqrt{x+2}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{x+2-2}{x(\sqrt{x+2}+\sqrt{2})} \quad \text { since }(a-b)(a+b)=a^{2}-b^{2} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+2}+\sqrt{2})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

Examples

1. $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+4 x-5}$
2. $\lim _{x \rightarrow-2} \frac{|x|}{x}$
3. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
4. $\lim _{x \rightarrow 0} \frac{(3+x)^{2}-3^{2}}{x}$

Examples

1. $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+4 x-5}$
2. $\lim _{x \rightarrow-2} \frac{|x|}{x}=-1$
3. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ is undefined
4. $\lim _{x \rightarrow 0} \frac{(3+x)^{2}-3^{2}}{x}$

$$
=6
$$

Infinite limits

If $f(x)$ gets arbitrarily large as $x \rightarrow a$, then it doesn't have a limit. Sometimes, though, it's more useful to give more information.

Infinite limits

If $f(x)$ gets arbitrarily large as $x \rightarrow a$, then it doesn't have a limit. Sometimes, though, it's more useful to give more information.

Example:

For both $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}, \lim _{x \rightarrow 0} f(x)$ does not exist. However, they're both "better behaved" than that might imply:

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
\lim _{x \rightarrow 0} \frac{1}{x} \text { does not exist }
\end{gathered}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty \\
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
\end{gathered}
$$

Infinite limits

If $f(x)$ gets arbitrarily large as $x \rightarrow a$, then it doesn't have a limit. Sometimes, though, it's more useful to give more information.

Example:

For both $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}, \lim _{x \rightarrow 0} f(x)$ does not exist. However, they're both "better behaved" than that might imply:

$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$
$\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist

$\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\infty$
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Why? A vertical asymptote occurs where

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

Infinite limits

Badly behaved example:

(denser and denser vertical asymptotes)
$\lim _{x \rightarrow a^{+}} \csc (1 / x)$ does not exist, and $\lim _{x \rightarrow a^{-}} \csc (1 / x)$ does not exist

Limits at Infinity

We say that a function f approaches the limit L as x gets bigger and bigger (in the positive or negative direction),
written $\quad \lim _{x \rightarrow \infty} f(x)=L \quad$ or $\quad \lim _{x \rightarrow-\infty} f(x)=L$
if we can make $f(x)$ as close to L as we want by taking x sufficiently large. (By "large", we mean large in magnitude)

Limits at Infinity

We say that a function f approaches the limit L as x gets bigger and bigger (in the positive or negative direction),

$$
\text { written } \quad \lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

if we can make $f(x)$ as close to L as we want by taking x sufficiently large. (By "large", we mean large in magnitude)

Example 1:

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Limits at Infinity: functions and their inverses

Theorem

If $\lim _{x \rightarrow a^{ \pm}} f(x)=\infty$, then $\lim _{x \rightarrow \infty} f^{-1}(x)=a$.
If $\lim _{x \rightarrow a^{ \pm}} f(x)=-\infty$, then $\lim _{x \rightarrow-\infty} f^{-1}(x)=a$.

Limits at Infinity: functions and their inverses

Theorem
If $\lim _{x \rightarrow a^{ \pm}} f(x)=\infty$, then $\lim _{x \rightarrow \infty} f^{-1}(x)=a$.
If $\lim _{x \rightarrow a^{ \pm}} f(x)=-\infty$, then $\lim _{x \rightarrow-\infty} f^{-1}(x)=a$.
Example: Let $\arctan (x)$ be the inverse function to $\tan (x)$:

$$
\left.\begin{array}{l}
y=\tan (X): \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Limits at Infinity: functions and their inverses

Theorem
If $\lim _{x \rightarrow a^{ \pm}} f(x)=\infty$, then $\lim _{x \rightarrow \infty} f^{-1}(x)=a$.
If $\lim _{x \rightarrow a^{ \pm}} f(x)=-\infty$, then $\lim _{x \rightarrow-\infty} f^{-1}(x)=a$.
Example: Let $\arctan (x)$ be the inverse function to $\tan (x)$:

$$
y=\tan (x)
$$

(restrict the domain to ($-\frac{\pi}{2}, \frac{\pi}{2}$) so that we can invert)

Limits at Infinity: functions and their inverses

Theorem
If $\lim _{x \rightarrow a^{ \pm}} f(x)=\infty$, then $\lim _{x \rightarrow \infty} f^{-1}(x)=a$.
If $\lim _{x \rightarrow a^{ \pm}} f(x)=-\infty$, then $\lim _{x \rightarrow-\infty} f^{-1}(x)=a$.
Example: Let $\arctan (x)$ be the inverse function to $\tan (x)$:

$$
y=\tan (x)
$$

(restrict the domain to ($-\frac{\pi}{2}, \frac{\pi}{2}$) so that we can invert)

$$
y=\arctan (x)
$$

Limits at Infinity: functions and their inverses

Theorem
If $\lim _{x \rightarrow a^{ \pm}} f(x)=\infty$, then $\lim _{x \rightarrow \infty} f^{-1}(x)=a$.
If $\lim _{x \rightarrow a^{ \pm}} f(x)=-\infty$, then $\lim _{x \rightarrow-\infty} f^{-1}(x)=a$.
Example: Let $\arctan (x)$ be the inverse function to $\tan (x)$:

$$
y=\tan (x)
$$

$$
\begin{aligned}
& \text { Since } \quad \lim _{x \rightarrow \pi / 2^{-}}=\infty \\
& \text { and } \quad \lim _{x \rightarrow-\pi / 2^{+}}=-\infty
\end{aligned}
$$

(restrict the domain to ($-\frac{\pi}{2}, \frac{\pi}{2}$) so that we can invert)

$$
y=\arctan (x):
$$

we have $\lim _{x \rightarrow \infty}=\pi / 2$
and $\lim _{x \rightarrow-\infty}=-\pi / 2$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things.

Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1}$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3}$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things.

Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=\lim _{x \rightarrow \infty}\left(\frac{x-1}{x^{3}+2}\right)\left(\frac{1 / x^{3}}{1 / x^{3}}\right)
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=\lim _{x \rightarrow \infty}\left(\frac{x-1}{x^{3}+2}\right)\left(\frac{1 / x^{3}}{1 / x^{3}}\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{2}{x^{3}}}
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=\lim _{x \rightarrow \infty}\left(\frac{x-1}{x^{3}+2}\right)\left(\frac{1 / x^{3}}{1 / x^{3}}\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{2}{x^{3}}}=\frac{0-0}{1+0}
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=\lim _{x \rightarrow \infty}\left(\frac{x-1}{x^{3}+2}\right)\left(\frac{1 / x^{3}}{1 / x^{3}}\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{2}{x^{3}}}=\frac{0-0}{1+0}=0
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$

Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$

Rational functions

Limits that look like they're going to $\frac{\infty}{\infty}$ can actually be doing lots of different things. To fix this, divide the top and bottom by the highest power in the denominator!
Ex $1 \lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$:

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=\lim _{x \rightarrow \infty}\left(\frac{x-1}{x^{3}+2}\right)\left(\frac{1 / x^{3}}{1 / x^{3}}\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{3}}}{1+\frac{2}{x^{3}}}=\frac{0-0}{1+0}=0
$$

Ex $2 \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{2}}{1 / x^{2}}$
Ex $3 \lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3} \rightarrow \infty$
Fix: multiply the expression by $\frac{1 / x^{3}}{1 / x^{3}}$

Rational functions: quick trick

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=0
$$

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1}=\frac{3}{4}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3}=\infty
$$

Rational functions: quick trick

$\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=0$

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1}=\frac{3}{4}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3}=\infty
$$

Suppose
$P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad$ and $\quad Q(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$ are polynomials of degree n and m respectively. Then in general,

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Rational functions: quick trick

$\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=0$

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1}=\frac{3}{4}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3}=\infty
$$

Suppose
$P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad$ and $\quad Q(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$ are polynomials of degree n and m respectively. Then in general,

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}=\lim _{x \rightarrow \infty} \frac{a_{n}}{b_{m}} x^{n-m}
$$

Rational functions: quick trick

$\lim _{x \rightarrow \infty} \frac{x-1}{x^{3}+2}=0$

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-1}=\frac{3}{4}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-x^{2}+2}{x^{3}+3}=\infty
$$

Suppose
$P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad$ and $\quad Q(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$ are polynomials of degree n and m respectively. Then in general,

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}=\lim _{x \rightarrow \infty} \frac{a_{n}}{b_{m}} x^{n-m}= \begin{cases}0 & n<m \\ \frac{a_{n}}{b_{m}} & n=m \\ \pm \infty & n<m\end{cases}
$$

Examples: Other ratios with powers.

Example:

$\lim _{x \rightarrow \infty} \frac{x}{\sqrt{3 x^{2}+2}}$
[hint: multiply by $\frac{1 / x}{1 / x}$ and remember $a \sqrt{b}=\sqrt{a^{2} b}$.]

Examples: Other ratios with powers.

Example:
$\lim _{x \rightarrow \infty} \frac{x}{\sqrt{3 x^{2}+2}}$
[hint: multiply by $\frac{1 / x}{1 / x}$ and remember $a \sqrt{b}=\sqrt{a^{2} b}$.]

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{3 x^{2}+2}} & =\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{3 x^{2}+2}}\right)\left(\frac{1 / x}{1 / x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x} \sqrt{3 x^{2}+2}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{1}{x^{2}}\left(3 x^{2}+2\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{3+\frac{2}{x^{2}}}} \\
& =\frac{1}{\sqrt{3+0}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

