# Exponential and Logarithm Functions

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * * n$ )

Some identities:

$$2^5 = 2 * 2 * 2 * 2 * 2 * 2$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * * n$ )

Some identities:

$$2^5 = 2 * 2 * 2 * 2 * 2$$
  
 $2^5 * 2^3 = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^8$ 

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * * n$ )

Some identities:

$$a^n * a^m = a^{n+m}$$

$$2^{5} = 2 * 2 * 2 * 2 * 2$$
$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * * n$ )

Some identities:

$$a^n * a^m = a^{n+m}$$

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdots a}_n$$
 (WeBWoRK:  $a^n$  or  $a * *n$ )

Some identities:

$$a^n * a^m = a^{n+m} \qquad (a^n)^m = a^{n*m}$$

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdots a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * *n$ )

#### Some identities:

$$a^n * a^m = a^{n+m}$$
  $(a^n)^m = a^{n*m}$   
(Notice:  $a^{m^n}$  means  $a^{(m^n)}$ , since  $(a^m)^n$  can be written another way)

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdots a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * * n$ )

#### Some identities:

$$a^n * a^m = a^{n+m}$$
  $(a^n)^m = a^{n*m}$   
(Notice:  $a^{m^n}$  means  $a^{(m^n)}$ , since  $(a^m)^n$  can be written another way)

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

$$2^{3} * 5^{3} = (2 * 2 * 2) * (5 * 5 * 5) = (2 * 5) * (2 * 5) * (2 * 5) = (2 * 5)^{3}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdots a}_{n}$$
 (WeBWoRK:  $a^n$  or  $a * *n$ )

#### Some identities:

$$a^n * a^m = a^{n+m}$$
  $(a^n)^m = a^{n*m}$   
(Notice:  $a^{m^n}$  means  $a^{(m^n)}$ , since  $(a^m)^n$  can be written another way)

$$a^n * b^n = (a * b)^n$$

$$2^{5} = 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

$$2^{3} * 5^{3} = (2 * 2 * 2) * (5 * 5 * 5) = (2 * 5) * (2 * 5) * (2 * 5) = (2 * 5)^{3}$$

Take for granted: If *n* and *m* are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^0$ ?

$$a^n = a^{n+0} = a^n * a^0$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^0$ ?

$$a^n = a^{n+0} = a^n * a^0$$
, so  $a^0 = 1$ 

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a<sup>0</sup>?

$$a^n = a^{n+0} = a^n * a^0$$
, so  $a^0 = 1$ 

2. What is 
$$a^x$$
 if x is negative?  
 $a^n * a^{-n} = a^{n-n} = a^0 = 1$ 

Take for granted: If *n* and *m* are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^{0}$ ?  $a^{n} = a^{n+0} = a^{n} * a^{0}$ , so  $a^{0} = 1$ . 2. What is  $a^{x}$  if x is negative?  $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$ , so  $a^{-n} = 1/(a^{n})$ 

Take for granted: If *n* and *m* are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^{0}$ ?  $a^{n} = a^{n+0} = a^{n} * a^{0}$ , so  $a^{0} = 1$ . 2. What is  $a^{x}$  if x is negative?  $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$ , so  $a^{-n} = 1/(a^{n})$ 

3. What is a<sup>x</sup> if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a$$

Take for granted: If *n* and *m* are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^{0}$ ?  $a^{n} = a^{n+0} = a^{n} * a^{0}$ , so  $a^{0} = 1$ . 2. What is  $a^{x}$  if x is negative?  $a^{n} * a^{-n} = a^{n-n} = a^{0} = 1$ , so  $a^{-n} = 1/(a^{n})$ 3. What is  $a^{x}$  if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a,$$
 so  $a^{1/n} = \sqrt[n]{a}$ 

and 
$$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$
.

Take for granted: If *n* and *m* are positive integers,

$$a^n = \underbrace{a \cdot a \cdots a}_n, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is  $a^0$ ?  $a^n = a^{n+0} = a^n * a^0,$ so  $|a^0 = 1|$ . 2. What is  $a^x$  if x is negative?  $a^n * a^{-n} = a^{n-n} = a^0 = 1$ , so  $|a^{-n} = 1/(a^n)|$ 3. What is  $a^{x}$  if x is a fraction?  $(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a,$  so  $|a^{1/n} = \sqrt[n]{a}$ and  $a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$ . Example:  $8^{5/3} = (\sqrt[3]{8})^5 = 2^5 = 32$  or  $8^{5/3} = \sqrt[3]{8^5} = \sqrt[3]{32,768} = 32$ 

What is  $a^{\times}$  for all x? If a > 1:



What is  $a^{\times}$  for all x? If a > 1:



What is  $a^{\times}$  for all x? If a > 1:













```
What is a^x for all x?
If 0 < a < 1:
```











What is  $a^x$  for all x?

If 0 > *a*:







What is  $a^{\times}$  for all x? If 0 > a:



# The function $a^x$ :



#### **Properties:**

 $a^{b}*a^{c} = a^{b+c}$   $(a^{b})^{c} = a^{b*c}$   $a^{-x} = 1/a^{x}$   $a^{c}*b^{c} = (ab)^{c}$ 

### Our favorite exponential function:

Look at how the function is increasing through the point (0, 1):















**Q**: Is there an exponential function whose slope at (0,1) is 1?

Look at how the function is increasing through the point (0, 1):



**Q**: Is there an exponential function whose slope at (0,1) is 1?



**Q:** Is there an exponential function whose slope at (0,1) is 1?

Look at how the function is increasing through the point (0, 1):



**Q:** Is there an exponential function whose slope at (0,1) is 1? **A:**  $e^{x}$  is the exponential function whose slope at (0,1) is 1. (e = 2.71828183... is to calculus as  $\pi = 3.14159265...$  is to geometry)

The exponential function  $a^x$  has inverse  $\log_a(x)$ 

The exponential function  $a^x$  has inverse  $\log_a(x)$ , i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}$$

The exponential function  $a^x$  has inverse  $\log_a(x)$ , i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}, \quad \text{i.e.}$$

$$y = a^x$$
 if and only if  $\log_a(y) = x$ .

The exponential function  $a^x$  has inverse  $\log_a(x)$ , i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}, \quad \text{i.e}$$

$$y = a^x$$
 if and only if  $\log_a(y) = x$ .









Domain:  $(0,\infty)$  i.e. all x > 0

Range:  $(-\infty,\infty)$  i.e. all x





Domain:  $(0, \infty)$  i.e. all x > 0 R

Range:  $(-\infty,\infty)$  i.e. all x

Since...

we know...

Since...

1. 
$$a^0 = 1$$

we know...

1. 
$$\log_a(1) = 0$$

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

we know...

1. 
$$\log_a(1) = 0$$
  
2.  $\log_a(a) = 1$ 

Since...

1. 
$$a^{0} = 1$$
  
2.  $a^{1} = a$   
3.  $a^{b} * a^{c} = a^{b+c}$ 

we know...

1.  $\log_a(1) = 0$ 

$$2. \log_a(a) = 1$$

3.  $\log_a(b * c) =$  $\log_a(b) + \log_a(c)$ 

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

3. 
$$a^b * a^c = a^{b+c}$$

we know...

1. 
$$\log_a(1) = 0$$

2. 
$$\log_a(a) = 1$$

3. 
$$\log_a(b * c) =$$
  
 $\log_a(b) + \log_a(c)$ 

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

3. 
$$a^b * a^c = a^{b+c}$$

we know...

1. 
$$\log_a(1) = 0$$

$$2. \log_a(a) = 1$$

3. 
$$\log_a(b * c) =$$
  
 $\log_a(b) + \log_a(c)$ 

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Then  $a^y = a^{\log_a(b) + \log_a(c)}$ 

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

3. 
$$a^b * a^c = a^{b+c}$$

we know...

1. 
$$\log_a(1) = 0$$

$$2. \log_a(a) = 1$$

3. 
$$\log_a(b * c) =$$
  
 $\log_a(b) + \log_a(c)$ 

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Then  $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)}$ 

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

3. 
$$a^b * a^c = a^{b+c}$$

we know...

1. 
$$\log_a(1) = 0$$

$$2. \log_a(a) = 1$$

3. 
$$\log_a(b * c) =$$
  
 $\log_a(b) + \log_a(c)$ 

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Then  $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)} = b * c$ .

Since...

1. 
$$a^0 = 1$$
  
2.  $a^1 = a$ 

3. 
$$a^b * a^c = a^{b+c}$$

we know...

1. 
$$\log_a(1) = 0$$

$$2. \log_a(a) = 1$$

3. 
$$\log_a(b * c) =$$
  
 $\log_a(b) + \log_a(c)$ 

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ . Then  $a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)}a^{\log_a(c)} = b * c$ . So  $y = \log_a(b * c)$  as well!

Since...

1.  $a^{0} = 1$ 2.  $a^{1} = a$ 3.  $a^{b} * a^{c} = a^{b+c}$  we know...

- 1.  $\log_a(1) = 0$
- 2.  $\log_a(a) = 1$
- 3.  $\log_a(b * c) =$  $\log_a(b) + \log_a(c)$

4. 
$$(a^b)^c = a^{b*c}$$

$$4. \log_a(b^c) = c \log_a(b)$$

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Then  $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)} = b * c$ .

So  $y = \log_a(b * c)$  as well!

Since...

1.  $a^0 = 1$ 2.  $a^1 = a$ 3.  $a^b * a^c = a^{b+c}$  we know...

- 1.  $\log_a(1) = 0$
- 2.  $\log_a(a) = 1$
- 3.  $\log_a(b * c) =$  $\log_a(b) + \log_a(c)$

4. 
$$(a^b)^c = a^{b*c}$$

$$4. \log_a(b^c) = c \log_a(b)$$

**Example:** why  $\log_a(b * c) = \log_a(b) + \log_a(c)$ : Suppose  $y = \log_a(b) + \log_a(c)$ .

Then  $a^{y} = a^{\log_{a}(b) + \log_{a}(c)} = a^{\log_{a}(b)}a^{\log_{a}(c)} = b * c$ .

So  $y = \log_a(b * c)$  as well!

Lastly: 
$$\frac{\log_a(b)}{\log_a(c)} = \log_c(b)$$

#### Favorite logarithmic function

Remember:  $y = e^x$  is the function whose slope through the point (0,1) is 1. The *inverse* to  $y = e^x$  is the *natural log*:



#### Favorite logarithmic function

Remember:  $y = e^x$  is the function whose slope through the point (0,1) is 1. The *inverse* to  $y = e^x$  is the *natural log*:



We will often use the facts that  $e^{\ln(x)} = x$  (for x > 0) and  $\ln(e^x) = x$  (for all x)

#### Two super useful facts:

Explain why: (1)  $\log_a(b) = \ln(b) / \ln(a)$ 

(2)  $a^b = e^{b \ln(a)}$  [hint: start by rewriting  $b \ln(a)$ , and use the fact that  $e^{\ln(x)} = x$ ]

#### Two super useful facts:

Explain why: (1)  $\log_a(b) = \ln(b) / \ln(a)$ 

Since  $\ln(b) = \log_e(b)$  and  $\ln(a) = \log_e(a)$ , we have

$$\frac{\ln(b)}{\ln(a)} = \frac{\log_e(b)}{\log_e(a)} = \log_a(b)$$

(2)  $a^b = e^{b \ln(a)}$  [hint: start by rewriting  $b \ln(a)$ , and use the fact that  $e^{\ln(x)} = x$ ]

Since  $b \ln(a) = \ln(a^b)$  and  $e^{\ln(x)} = x$ , we have

 $e^{b\ln(a)} = e^{\ln(a^b)} = a^b$ 

Examples:

(1) Condense the logarithmic expressions  $\frac{1}{2}\ln(x)+3\ln(x+1) \qquad 2\ln(x+5)-\ln(x) \qquad \frac{1}{3}(\log_3(x)-\log_3(x+1))$ 

(2) Solve the following expressions for x:

$$e^{-x^2} = e^{-3x-4}$$
  $3(2^x) = 24$ 

 $2(e^{3x-5}) - 5 = 11$   $\ln(3x+1) - \ln(5) = \ln(2x)$ 

Examples:

(1) Condense the logarithmic expressions  

$$\frac{1}{2}\ln(x)+3\ln(x+1) \qquad 2\ln(x+5)-\ln(x) \qquad \frac{1}{3}(\log_3(x)-\log_3(x+1))$$

$$\ln\left(\frac{(x+5)^2}{x}\right)$$

$$\log_3\left(\left(\frac{x}{x+1}\right)^{1/3}\right)$$

(2) Solve the following expressions for x:

 $\ln(\sqrt{x}(x+1)^3)$ 

$$e^{-x^2} = e^{-3x-4}$$
  $3(2^x) = 24$   
 $x = -1, 4$   $x = 3$ 

 $2(e^{3x-5}) - 5 = 11$   $\ln(3x+1) - \ln(5) = \ln(2x)$ 

$$x = \frac{\ln(8) + 5}{3}$$
 
$$x = \frac{1}{7}$$

$$\frac{1}{2}\ln(x) + 3\ln(x+1) = \ln(x''^2) + \ln((x+1)^3)$$
$$= \ln(x''^2(x+1)^3)$$

$$2\ln(x+5) - \ln(x) = \ln((x+5)^{2}) + \ln(x^{-1})$$
  
=  $\ln((x+5)^{2} \cdot x^{-1}) = \ln(\frac{(x+5)^{2}}{x})$   
 $\frac{1}{3}(\log_{3}(x) - \log_{3}(x+1)) = \frac{1}{3}(\log_{3}(x(x+1)^{-1}))$   
=  $\log_{3}(\frac{3}{\sqrt{x+1}})$ 

 $If e^{-x^2} = e^{-3x-4}$ then  $-x^2 = -3x - 4$ , (take In(-) both sides)  $50 \times x^2 - 3x - 4 = 0$ (x-4)(x+1)=  $50 \times = 4 \text{ or } -1$  $1f 3(2^{*})=24$  $2^{*} = 8$ then & X = 3

 $1f 2(e^{3x-5})-5=11$ then  $e^{3x-5} = \frac{11+5}{8} = 8$ 3x - 5 = ln(8)80  $X = \begin{bmatrix} ln(8) + 5 \\ \hline 3 \end{bmatrix}$ 50

ln(3x+1) - ln(5) = ln(2x) $\left(\ln\left(\frac{3x+1}{5}\right)\right)^{=}\left(\ln(2x)\right)$ 3×+1 = 2× 3x+1=10x  $|=7\times | x=\frac{1}{7}|$ (ln(3x+1) - ln(5) = ln(3x+1) + ln(5') $= \ln \left( (3x+1)5^{-1} \right) = \ln \left( \frac{3x+1}{5} \right)$  $ln(a) - ln(b) = ln(a) + ln(b^{-1}) = ln(a/b)$