Exponential and Logarithm Functions

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

Examples:

$$
2^{5}=2 * 2 * 2 * 2 * 2
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m}
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdot \cdots \cdot a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m}
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdot a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdot a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

(Notice: $a^{m^{n}}$ means $a^{\left(m^{n}\right)}$, since $\left(a^{m}\right)^{n}$ can be written another way)

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15} \\
2^{3^{5}} & =2^{243} \gg\left(2^{3}\right)^{5}=2^{15}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdot a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
\begin{gathered}
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m} \\
\text { (Notice: } a^{m^{n}} \text { means } a^{\left(m^{n}\right)}, \text { since }\left(a^{m}\right)^{n} \text { can be written another way) }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15} \\
2^{3^{5}} & =2^{243} \gg\left(2^{3}\right)^{5}=2^{15} \\
2^{3} * 5^{3} & =(2 * 2 * 2) *(5 * 5 * 5)=(2 * 5) *(2 * 5) *(2 * 5)=(2 * 5)^{3}
\end{aligned}
$$

The Basics

If n and m are positive integers...

$$
a^{n}=\underbrace{a \cdot a \cdots \cdot a}_{n} \quad\left(\text { WeBWoRK: } a^{\wedge} n \text { or } a * * n\right)
$$

Some identities:

$$
a^{n} * a^{m}=a^{n+m} \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

(Notice: $a^{m^{n}}$ means $a^{\left(m^{n}\right)}$, since $\left(a^{m}\right)^{n}$ can be written another way)

$$
a^{n} * b^{n}=(a * b)^{n}
$$

Examples:

$$
\begin{aligned}
2^{5} & =2 * 2 * 2 * 2 * 2 \\
2^{5} * 2^{3} & =(2 * 2 * 2 * 2 * 2) *(2 * 2 * 2)=2^{8} \\
\left(2^{3}\right)^{5} & =(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2) *(2 * 2 * 2)=2^{15} \\
2^{3^{5}} & =2^{243} \gg\left(2^{3}\right)^{5}=2^{15} \\
2^{3} * 5^{3} & =(2 * 2 * 2) *(5 * 5 * 5)=(2 * 5) *(2 * 5) *(2 * 5)=(2 * 5)^{3}
\end{aligned}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m} .
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m} .
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m} .
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m} .
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right)
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right) \text {. }
$$

3. What is a^{x} if x is a fraction?

$$
\left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m} .
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right) .
$$

3. What is a^{x} if x is a fraction?

$$
\begin{aligned}
& \left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a, \quad \text { so } a^{1 / n}=\sqrt[n]{a} \\
& \quad \text { and } a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

Pushing it further...

Take for granted: If n and m are positive integers,

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots \cdot a}_{n}, \quad a^{n} * a^{m}=a^{n+m}, \quad\left(a^{n}\right)^{m}=a^{n * m}
$$

Notice:

1. What is a^{0} ?

$$
a^{n}=a^{n+0}=a^{n} * a^{0}, \quad \text { so } a^{0}=1 .
$$

2. What is a^{x} if x is negative?

$$
a^{n} * a^{-n}=a^{n-n}=a^{0}=1, \quad \text { so } a^{-n}=1 /\left(a^{n}\right) \text {. }
$$

3. What is a^{x} if x is a fraction?

$$
\begin{aligned}
& \left(a^{n}\right)^{1 / n}=a^{n * \frac{1}{n}}=a^{1}=a, \quad \text { so } a^{1 / n}=\sqrt[n]{a} \\
& \quad \text { and } a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
\end{aligned}
$$

Example: $8^{5 / 3}=(\sqrt[3]{8})^{5}=2^{5}=32$ or $8^{5 / 3}=\sqrt[3]{8^{5}}=\sqrt[3]{32,768}=32$

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?

If $a>1$:

What is a^{x} for all x ?
If $a>1$:

What is a^{x} for all x ?

If $a>1$:

$$
x=n / 2, \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots
$$

What is a^{x} for all x ?

If $a>1$:

What is a^{x} for all x ?

If $a>1$:

$$
x=n / 2, n / 3, \ldots, n / 15, \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots
$$

What is a^{x} for all x ?

If $a>1$:

What is a^{x} for all x ?

If $a>1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0<a<1$:

What is a^{x} for all x ?
If $0>a$:

What is a^{x} for all x ?
If $0>a$:

What is a^{x} for all x ?

If $0>a$:

What is a^{x} for all x ?

If $0>a$:

$$
\begin{aligned}
& \text { (e.g. a }=-2 \text {) } \\
& x=n / 2, n / 3, \ldots, n / 100, \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots \\
& \mathrm{OH} \text { NO! }
\end{aligned}
$$

The function a^{x} :

D: $(-\infty, \infty), R:(0, \infty)$

D: $(-\infty, \infty), R:\{1\}$

D: $(-\infty, \infty), R:(0, \infty)$

D: $(0, \infty), R:\{0\}$

Properties:
$a^{b} * a^{c}=a^{b+c} \quad\left(a^{b}\right)^{c}=a^{b * c} \quad a^{-x}=1 / a^{x} \quad a^{c} * b^{c}=(a b)^{c}$

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?

Our favorite exponential function:

Look at how the function is increasing through the point $(0,1)$:

Q: Is there an exponential function whose slope at $(0,1)$ is 1 ?
A: e^{x} is the exponential function whose slope at $(0,1)$ is 1 . ($e=2.71828183 \ldots$ is to calculus as $\pi=3.14159265 \ldots$ is to geometry)

Logarithms

The exponential function a^{x} has inverse $\log _{a}(x)$

Logarithms

The exponential function a^{x} has inverse $\log _{a}(x)$, i.e.

$$
\log _{a}\left(a^{x}\right)=x=a^{\log _{a}(x)}
$$

Logarithms

The exponential function a^{x} has inverse $\log _{a}(x)$, i.e.

$$
\begin{gathered}
\log _{a}\left(a^{x}\right)=x=a^{\log _{a}(x)}, \quad \text { i.e. } \\
y=a^{x} \quad \text { if and only if } \quad \log _{a}(y)=x
\end{gathered}
$$

Logarithms

The exponential function a^{x} has inverse $\log _{a}(x)$, i.e.

$$
\log _{a}\left(a^{x}\right)=x=a^{\log _{a}(x)}, \quad \text { i.e. }
$$

$$
y=a^{x} \quad \text { if and only if } \quad \log _{a}(y)=x
$$

Properties of Logarithms

Properties of Logarithms

Properties of Logarithms

Domain: $(0, \infty)$ i.e. all $x>0$
Range: $(-\infty, \infty)$ i.e. all x

Properties of Logarithms

$$
0<a<1 \text { : }
$$

Domain: $(0, \infty)$ i.e. all $x>0$
Range: $(-\infty, \infty)$ i.e. all x

Properties of Logarithms

Since...

we know...

Properties of Logarithms

Since...

we know. . .

1. $a^{0}=1$
2. $\log _{a}(1)=0$

Properties of Logarithms

Since. . .

1. $a^{0}=1 \quad$ 2. $a^{1}=a$
2. $\log _{a}(1)=0$
3. $\log _{a}(a)=1$

Properties of Logarithms

Since. . .

1. $a^{0}=1$
2. $a^{1}=a$
3. $a^{b} * a^{c}=a^{b+c}$
we know. . .
4. $\log _{a}(1)=0$
5. $\log _{a}(a)=1$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$

Properties of Logarithms

we know. . .

$$
\begin{array}{ll}
\text { 1. } a^{0}=1 & \text { 1. } \log _{a}(1)=0 \\
\text { 2. } a^{1}=a & \text { 2. } \log _{a}(a)=1 \\
\text { 3. } a^{b} * a^{c}=a^{b+c} & \text { 3. } \log _{a}(b * c)= \\
& \log _{a}(b)+\log _{a}(c)
\end{array}
$$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.

Properties of Logarithms

we know...

1. $a^{0}=1$
2. $\log _{a}(1)=0$
3. $a^{1}=a$
4. $a^{b} * a^{c}=a^{b+c}$
5. $\log _{a}(a)=1$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}$

Properties of Logarithms

we know. .

1. $a^{0}=1$
2. $\log _{a}(1)=0$
3. $a^{1}=a$
4. $a^{b} * a^{c}=a^{b+c}$
5. $\log _{a}(a)=1$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}$

Properties of Logarithms

Since. . .
we know...

1. $a^{0}=1$
2. $\log _{a}(1)=0$
3. $a^{1}=a$
4. $a^{b} * a^{c}=a^{b+c}$
5. $\log _{a}(a)=1$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}=b * c$.

Properties of Logarithms

Since...

we know. . .

$$
\begin{aligned}
& \text { 1. } a^{0}=1 \\
& \text { 2. } a^{1}=a \\
& \text { 3. } a^{b} * a^{c}=a^{b+c}
\end{aligned}
$$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}=b * c$.
So $y=\log _{a}(b * c)$ as well!

Properties of Logarithms

Since...

we know. . .

1. $a^{0}=1$
2. $\log _{a}(1)=0$
3. $a^{1}=a$
4. $\log _{a}(a)=1$
5. $a^{b} * a^{c}=a^{b+c}$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$
7. $\left(a^{b}\right)^{c}=a^{b * c}$
8. $\log _{a}\left(b^{c}\right)=c \log _{a}(b)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}=b * c$.
So $y=\log _{a}(b * c)$ as well!

Properties of Logarithms

Since...

we know...

1. $a^{0}=1$
2. $\log _{a}(1)=0$
3. $a^{1}=a$
4. $\log _{a}(a)=1$
5. $a^{b} * a^{c}=a^{b+c}$
6. $\log _{a}(b * c)=$ $\log _{a}(b)+\log _{a}(c)$
7. $\left(a^{b}\right)^{c}=a^{b * c}$
8. $\log _{a}\left(b^{c}\right)=c \log _{a}(b)$

Example: why $\log _{a}(b * c)=\log _{a}(b)+\log _{a}(c)$:
Suppose $y=\log _{a}(b)+\log _{a}(c)$.
Then $a^{y}=a^{\log _{a}(b)+\log _{a}(c)}=a^{\log _{a}(b)} a^{\log _{a}(c)}=b * c$.
So $y=\log _{a}(b * c)$ as well!

$$
\text { Lastly: } \frac{\log _{a}(b)}{\log _{a}(c)}=\log _{c}(b)
$$

Favorite logarithmic function

Remember: $y=e^{x}$ is the function whose slope through the point $(0,1)$ is 1 .
The inverse to $y=e^{x}$ is the natural log:

$$
\ln (x)=\log _{e}(x)
$$

Favorite logarithmic function

Remember: $y=e^{x}$ is the function whose slope through the point $(0,1)$ is 1 .
The inverse to $y=e^{x}$ is the natural log:

$$
\ln (x)=\log _{e}(x)
$$

We will often use the facts that $e^{\ln (x)}=x$ (for $x>0$) and $\ln \left(e^{x}\right)=x$ (for all x)

Two super useful facts:

Explain why:
(1) $\log _{a}(b)=\ln (b) / \ln (a)$
(2) $a^{b}=e^{b \ln (a)}$ [hint: start by rewriting $b \ln (a)$, and use the fact that $\left.e^{\ln (x)}=x\right]$

Two super useful facts:

Explain why:
(1) $\log _{a}(b)=\ln (b) / \ln (a)$

Since $\ln (b)=\log _{e}(b)$ and $\ln (a)=\log _{e}(a)$, we have

$$
\frac{\ln (b)}{\ln (a)}=\frac{\log _{e}(b)}{\log _{e}(a)}=\log _{a}(b)
$$

(2) $a^{b}=e^{b \ln (a)}\left[\right.$ hint: start by rewriting $b \ln (a)$, and use the fact that $\left.e^{\ln (x)}=x\right]$

Since $b \ln (a)=\ln \left(a^{b}\right)$ and $e^{\ln (x)}=x$, we have

$$
e^{b \ln (a)}=e^{\ln \left(a^{b}\right)}=a^{b}
$$

Examples:

(1) Condense the logarithmic expressions
$\frac{1}{2} \ln (x)+3 \ln (x+1) \quad 2 \ln (x+5)-\ln (x) \quad \frac{1}{3}\left(\log _{3}(x)-\log _{3}(x+1)\right)$
(2) Solve the following expressions for x :

$$
e^{-x^{2}}=e^{-3 x-4} \quad 3\left(2^{x}\right)=24
$$

$$
2\left(e^{3 x-5}\right)-5=11 \quad \ln (3 x+1)-\ln (5)=\ln (2 x)
$$

Examples:

(1) Condense the logarithmic expressions

$$
\begin{array}{rll}
\frac{1}{2} \ln (x)+3 \ln (x+1) & 2 \ln (x+5)-\ln (x) & \frac{1}{3}\left(\log _{3}(x)-\log _{3}(x+1)\right) \\
\ln \left(\sqrt{x}(x+1)^{3}\right) & \ln \left(\frac{(x+5)^{2}}{x}\right) & \log _{3}\left(\left(\frac{x}{x+1}\right)^{1 / 3}\right)
\end{array}
$$

(2) Solve the following expressions for x :

$$
\begin{array}{cc}
e^{-x^{2}}=e^{-3 x-4} & 3\left(2^{x}\right)=24 \\
x=-1,4 & x=3 \\
2\left(e^{3 x-5}\right)-5=11 & \ln (3 x+1)-\ln (5)=\ln (2 x) \\
x=\frac{\ln (8)+5}{3} & x=\frac{1}{7}
\end{array}
$$

$$
\begin{aligned}
\frac{1}{2} \ln (x)+3 \ln (x+1) & =\ln \left(x^{1 / 2}\right)+\ln \left((x+1)^{3}\right) \\
& =\ln \left(x^{1 / 2}(x+1)^{3}\right) \\
2 \ln (x+5)-\ln (x) & =\ln \left((x+5)^{2}\right)+\ln \left(x^{-1}\right) \\
& =\ln \left((x+5)^{2} \cdot x^{-1}\right)=\ln \left(\frac{(x+5)^{2}}{x}\right) \\
\frac{1}{3}\left(\log _{3}(x)-\log _{3}(x+1)\right) & =\frac{1}{3}\left(\log _{3}\left(x(x+1)^{-1}\right)\right) \\
& =\log _{3}\left(\sqrt[3]{\frac{x}{x+1}}\right)
\end{aligned}
$$

If $e^{-x^{2}}=e^{-3 x-4}$, then $-x^{2}=-3 x-4$,
(take $\ln (-)$ both sides)

If $3\left(2^{x}\right)=24$, then $2^{x}=8$,
so $x=3$

If $2\left(e^{3 x-5}\right)-5=11$, then $e^{3 x-5}=\frac{11+5}{2}=8$
so $3 x-5=\ln (8)$
so $x=\frac{\ln (8)+5}{3}$

$$
\begin{aligned}
& \text { If } \begin{aligned}
& \ln (3 x+1)-\ln (5)=\ln (2 x) \\
& e\left(\ln \left(\frac{3 x+1}{5}\right)\right)=(\ln (2 x)) \\
& e^{(3 x+1} \\
& 5=2 x \\
& 3 x+1=10 x \\
& 1=7 x \quad x=\frac{1}{7} \\
&(\ln (3 x+1)-\ln (5)=\ln (3 x+1)+\ln \left(5^{-1}\right) \\
&\left.=\ln \left((3 x+1) 5^{-1}\right)=\ln \left(\frac{3 x+1}{5}\right)\right)
\end{aligned} \\
& \ln (a)-\ln (b)=\ln (a)+\ln \left(5^{-1}\right)=\ln (9 / b)
\end{aligned}
$$

