Functions and their graphs

Simplest functions: Lines!

Two points define a line!
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Point-slope form: $y-y_{1}=m\left(x-x_{1}\right) \quad$ (good for writing down lines)
Slope-intercept form: $y=m x+b$
(good for graphing)
General form: $A x+B y+C=0$

Simplest functions: Lines!

domain: all real \#'s

Slope: $m=\frac{3.4-1.8}{3-1}=0.8$
Point-slope form: $y-1.8=0.8 *(x-1)$ (good for writing down lines)

Slope-intercept form: $y=0.8 * x+1$ General form: $0.8 * x+y-1=0$
(good for graphing)
(accounts for ∞ slope)

Simplest functions: Lines!

Example:
Slope: $m=\frac{3.4-1.8}{3-1}=0.8$
Point-slope form: $y-1.8=0.8 *(x-1)$ (good for writing down lines)
Slope-intercept form: $y=0.8 * x+1$
(good for graphing)
General form: $0.8 * x+y-1=0$

Lines: Special cases

Constant functions

$$
(m=0)
$$

Parallel lines
$\left(m_{1}=m_{2}\right)$

Vertical lines
$(m=\infty)$

Perpendicular lines

Other good functions to know: polynomials.

$$
y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

(n is the degree)
The basics (know these graphs!)

$$
\begin{array}{ccc}
n=0: & n=1: & n=2: \\
\text { constants } & \text { lines } & \text { parabolas }
\end{array}
$$

Other good functions to know: polynomials.

$$
y=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

(n is the degree) $\quad a_{n} \neq 0$.
The basics (know these graphs!)

$$
\begin{array}{ccc}
n=0: & n=1: & n=2: \\
\text { constants } & \text { lines } & \text { parabolas }
\end{array}
$$

Other good functions to know: rationals.

$$
y=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}
$$

The basics (know these graphs!)

Other good functions to know: rationals.

$$
y=\frac{a_{0}+a_{1} x+\cdots+a_{n} x^{n}}{b_{0}+b_{1} x+\cdots+b_{m} x^{m}}
$$

The basics (know these graphs!)

Other powers: $y=x^{a}$.

The basics (know these graphs!)

Other powers: $y=x^{a}$.

The basics (know these graphs!)

$D:[0, \infty)$
$R:[0, \infty) \in \underline{\underline{\text { choice }}}$

New functions from old

New functions from old

(horizontal squeeze)

Graph of $y=4 * f(x)$:

(vertical dialation)

New functions from old

(vertical reflection)

Graph of $y=-f(x)$:

New functions from old

Example: See notes

Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$$
\xrightarrow{f\left(\frac{1}{2} x\right)}
$$

The domain of a function f is the set of x over which $f(x)$ is defined.
The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

Ex: Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$:

$D:[-1,1]$
R: $[-1,1]$

$D:[-2,2]$

$$
R:[-1,1]
$$

$D:[-3,1]$

The domain of a function f is the set of x over which $f(x)$ is defined.
The range of a function f is the set of y which satisfy $y=f(x)$ for some x.

Symmetries

A function $f(x)$ is even if it satisfies

$$
f(-x)=f(x)
$$

A function $f(x)$ is odd if it satisfies

$$
f(-x)=-f(x)
$$

Examples: Even, odd, or neither?

(c)

(d) $f(x)=\frac{x^{3}+x}{x+\frac{1}{x}}$
(for this one: actually plug in $-x$ and see what happens algebraically)
(a) even (b) neithr (c) odd
(d)

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{3}+(-x)}{(-x)+\frac{1}{(-x)}} \\
& =\frac{-x^{3}-x}{-x-\frac{1}{x}} \\
& =\frac{-\left(x^{3}+x\right)}{-\left(x+\frac{1}{x}\right)} \\
& =\frac{x^{3}+x}{x+\frac{1}{x}}=f(x)
\end{aligned}
$$

A graph is a graph of a function if for every x in its domain, there is exactly one y on the graph which is mapped to by that x : Function:

Not a function:

A function is additionally one-to-one if for every y, there is at most one x which maps to that y.

A one-to-one function:

Inverse functions

Let f be a one-to-one function.
If g is a function satisfying

$$
f(g(x))=g(f(x))=x
$$

then g is the inverse function of f. Write $g(x)=f^{-1}(x)$.

To calculate $f^{-1}(x)$, set $f(y)=x$ and solve for y. Then $y=f^{-1}(x)$.

To get the graph of $f^{-1}(x)$, flip the graph of $f(x)$ over the line $y=x$.

Inverse functions

Let f be a one-to-one function.
If g is a function satisfying

$$
f(g(x))=g(f(x))=x
$$

then g is the inverse function of f. Write $g(x)=f^{-1}(x)$.
Example: If $f(x)=x^{3}$, then $f^{-1}(x)=\sqrt[3]{x}$
To calculate $f^{-1}(x)$, set $f(y)=x$ and solve for y. Then $y=f^{-1}(x)$.

To get the graph of $f^{-1}(x)$, flip the graph of $f(x)$ over the line $y=x$.

Inverse functions

Let f be a one-to-one function.
If g is a function satisfying

$$
f(g(x))=g(f(x))=x
$$

then g is the inverse function of f. Write $g(x)=f^{-1}(x)$.
Example: If $f(x)=x^{3}$, then $f^{-1}(x)=\sqrt[3]{x}$
To calculate $f^{-1}(x)$, set $f(y)=x$ and solve for y. Then
$y=f^{-1}(x)$.
Example: If $f(x)=\frac{2 x}{x-1}$,

$$
\text { solve } x=\frac{2 y}{y-1} \text { for } y \text { to get } y=\frac{x}{x-2}
$$

So $f^{-1}(x)=\frac{x}{x-2}$.
To get the graph of $f^{-1}(x)$, flip the graph of $f(x)$ over the line $y=x$.

Pair up graphs with their inverses:

