Guidelines for Sketching a Curve

Properties to look for	Explanation	$f(x) = \frac{2x^2}{x^2 - 1}$
1. Domain	<u>All</u> x where $f(x)$ is defined	$x \neq \pm 1$
2. x- and y-intercepts	x-intercepts: $f(x) = 0$ y-intercepts: $f(0)$	$\begin{aligned} x &= 0\\ y &= 0 \end{aligned}$
3. Symmetries	even: $f(-x) = f(x)$ odd: $f(-x) = -f(x)$ periodic: $f(x+p) = f(x)$	even
4. Asymptotes	horizontal: $y = \lim_{x \to \pm \infty} f(x)$ vertical: $x = a \operatorname{if}_{x \to a^{\pm}} f(x) = \pm \infty$	y = 2 $x = -1 and x = 1$
5. Increases or Decreases (I/D-Test)	increases: $f'(x) > 0$ decreases: $f'(x) < 0$	$\begin{array}{c} (-\infty,-1) \ \underline{\text{and}} \ (-1,0) \\ (0,1) \ \underline{\text{and}} \ (1,\infty) \end{array}$
6. Local Maxima and Minima (1st or 2nd Derivative Test)	maximum: f' from $+$ to $-$ at $x = c$ minimum: f' from $-$ to $+$ at $x = c$	$\begin{aligned} x &= 0\\ \text{none} \end{aligned}$
7. Concavity and Inflections (Concavity Test)	concave upward: $f''(x) > 0$ concave downward: $f''(x) < 0$ inflection point: f'' changes sign	$(-\infty, -1) \text{ and} (1, \infty)$ $(-1, 1)$ none
8. Sketch the Curve		