Guidelines for Sketching a Curve

Properties to Look for	EXPLANATION	$f(x)=\frac{2 x^{2}}{x^{2}-1}$
1. Domain	All x where $f(x)$ is defined	$x \neq \pm 1$
2. x - and y-intercepts	x-intercepts: $f(x)=0$ y-intercepts: $f(0)$	$\begin{aligned} & x=0 \\ & y=0 \end{aligned}$
3. Symmetries	even: $f(-x)=f(x)$ odd: $f(-x)=-f(x)$ periodic: $f(x+p)=f(x)$	even
4. Asymptotes	$\begin{aligned} & \text { horizontal: } \quad y=\lim _{x \rightarrow \pm \infty} f(x) \\ & \text { vertical: } \quad x=a \underline{\text { if }} \lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty \end{aligned}$	$\begin{gathered} y=2 \\ x=-1 \text { and } x=1 \end{gathered}$
5. Increases or Decreases (I/D-Test)	increases: decreases: $\begin{aligned} & f^{\prime}(x)>0 \\ & f^{\prime}(x)<0 \end{aligned}$	$\begin{gathered} (-\infty,-1) \text { and }(-1,0) \\ (0,1) \text { and }(1, \infty) \end{gathered}$
6. Local Maxima and Minima (1st or 2nd Derivative Test)	maximum: f^{\prime} from + to - at $x=c$ minimum: f^{\prime} from - to + at $x=c$	$x=0$ none
7. Concavity and Inflections (Concavity Test)	concave upward: $\quad f^{\prime \prime}(x)>0$ concave downward: $\quad f^{\prime \prime}(x)<0$ inflection point: $\quad f^{\prime \prime}$ changes sign	$\begin{gathered} (-\infty,-1) \text { and }(1, \infty) \\ (-1,1) \\ \text { none } \end{gathered}$
8. Sketch the Curve		

