
Suppose you want to know what the length of a curve y = f (x) is

from the point (a, f (a)) to the point (b, f (b)):
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Manipulating into something we can actually calculate...

dy

dx

dl
Remember, y = f (x).

d` =
p
dx

2

+ dy

2

=

p
dx

2

+ dy

2

dx

dx

=

r
dx

2

+ dy

2

dx

2

dx =

r
dx

2

dx

2

+

dy

2

dx

2

dx

=

s✓
dx

dx

◆
2

+

✓
dy

dx

◆
2

dx

=

q
1 + (f

0
(x))

2

dx

So ` =

Z
b

x=a

q
1 + (f

0
(x))

2

dx



Example

Find the length of the arc y = x

3/2
, from x = 1 to x = 2.
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Find the length of the curve y = x

4

+

1

32x

2

from x = 1 to x = 2.
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Keeping the algebra tame:

Let A = (2x)
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Most of the time,

the resulting integral is “hard” (not elementary)

Set up (but do not integrate) the integrals which compute the

length of the following functions:

1. f (x) = x

2

from x = �3 to 2

2. f (x) = x

2

+ 5 from x = �3 to 2

3. f (x) = �x

2

+ ⇡ from x = �3 to 2

4. f (x) = sin(x) from x = 0 to

⇡
2

5. f (x) = e
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from x = 0 to 1

6. f (x) =

p
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from x = �1 to 1
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Extra practice: Arclength

1. Use integration to show that the circumference of a circle of radius r is 2⇡r.

2. Find the length of the curve y = x

2/3
between x = �1 and x = 8.

3. Find the length of the curve y = (1/3)(x

2
+ 2)

3/2
from x = 0 to x = 3.

4. Find the length of the curve y = x

3/2
from (0, 0) to (4, 8).

5. Find the length of the curve y = (1/3)x

3
+ 1/4x from x = 1 to x = 3.

6. Find the length of the curve y = x

4
/4 + 1/8x

2
from x = 1 to x = 2.

7. Find the length of the curve y = (3/5)x

5/3 � (3/4)x

1/3
from x = 0 to x = 1.

8. Find the length of the curve y = (2/3)x

3/2 � (1/2)x

1/2
from x = 0 to x = 4.

9. Consider the curve y = f(x), x � 0, such that f(0) = a. Let s(x) denote the arc length along the

curve from (0, a) to (x, f(x)). Find f(x) if s(x) = Ax. What are the permissible values of A?

10. Consider the curve y = f(x), x � 0, such that f(0) = a. Let s(x) denote the arc length along the curve

from (0, a) to (x, f(x)). Is it possible for s(x) to equal x

n
with n > 1? Give a reason for your answer.


