Warm-up

Area between curves

- 1. Calculate the area between the x-axis and the curve $y = -x^2 + 5x 6$ between x = 1 and x = 2. (Your answer should be positive we want area.)
- 2. Calculate the area of the region enclosed between the curve $y = -x^2 + 5x 6$ and the x-axis. (Find where $y = -x^2 + 5x 6$ intersects the x-axis to get bounds.)
- 3. Calculate the area contained between the curve $y = x^2 5x + 6$ and the x-axis. (Again, your answer should be positive.)

Tip: Sketch $y = -(x^2 - 5x + 6)$ before you do any of these problems)

So $A = -\int_{1}^{2} -x^{2} + 5x - 6 dx$ $= -\left[-\frac{x^{3}}{3} + \frac{5x^{2}}{2} - 6x\right]_{X=1}^{2}$ $= -\left[-\frac{8}{3} + \frac{20}{2} - 12\right] + \left[-\frac{1}{3} + \frac{5}{2} - 6\right]$ $= \sqrt{\frac{7}{3} - \frac{15}{2} + 6} = \sqrt{\frac{5}{6}}$

So
$$A = \int_{2}^{3} - x^{2} + 5x - 6 dx$$

$$= \left[-x^{3} \right]_{3} + 5x^{2} / 2 - 6x \right]_{x=2}^{3}$$

$$= \left[-27 \right]_{3} + 45 / 2 - 18 \right]_{-} \left[-8 / 3 + \frac{26}{2} - 12 \right]$$

$$= -19 / 3 + \frac{25}{2} - 6 = \left[\frac{1}{6} \right]_{6}$$

3. Same as \$2

Areas Between Curves

We know that if f is a continuous nonnegative function on the interval [a, b], then $\int_a^b f(x)dx$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, f(x) and g(x) so that $g(x) \le f(x)$ for all x in the interval [a, b].

How do we find the area bounded by the two functions over that interval?

f = top function

g = bottom function

Area between
$$f$$
 and $g = \int_a^b f(x)dx - \int_a^b g(x)dx = \int_a^b f(x) - g(x)dx$

g = bottom function

Area between
$$f$$
 and $g = \int_a^b f(x)dx - \int_a^b g(x)dx = \int_a^b f(x) - g(x)dx$

f = top function

g = bottom function

Area between
$$f$$
 and $g = \int_a^b f(x)dx - \int_a^b g(x)dx = \int_a^b f(x) - g(x)dx$

Find the area of the region between the graphs of $y = x^2$ and $y = x^3$ for $0 \le x \le 1$.

Top: x^2 Bottom: x^3

Intersections: where does $x^2 = x^3$? x = 0 or 1

So Area =
$$\int_0^1 x^2 - x^3 dx = \frac{1}{3}x^3 - \frac{1}{4}x^4 \Big|_{x=0}^1 = \boxed{\left(\frac{1}{3} - \frac{1}{4}\right) - 0} > 0 \checkmark$$

Example

Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).

2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 dx$$

Area B =
$$\int_{-1}^{3} (9-x^2) - (x^3 - 9x) dx = -\int_{-1}^{3} x^3 + x^2 - 9x - 9 dx$$

* Careful: you can't combine these two integrals.

Functions of y

We could just as well consider two functions of y, say, $x = f_{Left}(y)$ and $x = g_{Right}(y)$ defined on the interval [c, d].

because otherwise,
we're stuck with

solution of ln(x) dx,

and we don't
know this on.

Find the area under the graph of $y = \ln x$ and above the interval [1, e] on the x-axis.

area =
$$\int_{y=0}^{1} e - e^{y} dy = (e * y - e^{y})|_{y=0}^{1} = (e - e) - (0 - 1) = 1.$$
e is just a number

Quick note: Putting FTC and substitution together

- **Q.** Calculate $\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx$.
- A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u = x^2$. So $du = 2x \ dx$, and $\frac{1}{2} \ du = x \ dx$. Therefore

$$\int x \sin(x^2) \ dx = \int \sin(u) * \frac{1}{2} \ du$$
$$= -\frac{1}{2} \cos(u) + C = -\frac{1}{2} \cos(x^2) + C$$

Step 2: Use your answer to compute

$$\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx = F(\sqrt{\pi/2}) - F(0).$$

$$\int_0^{\pi/2} x \sin(x^2) dx = -\frac{1}{2} \cos((\sqrt{\pi/2})^2) - \left(-\frac{1}{2} \cos(0^2)\right) = 1/2$$

Worksheet: Area between curves

Example 1:

Find the area of the region between $y = e^x$ and y = 1/(1+x) on the interval [0,1].

- 1. Check for intersection points (verify algebraically that x=0 is the only intersection by setting $e^x=\frac{1}{x+1}$).
- 2. Decide which function is on top (f(x)) and which function is on bottom (g(x)).
- 3. Calculate $\int_0^1 f(x) g(x) dx$.

Check: What if you get a negative answer?

Top:
$$e^{x}$$
 Bot: $||_{1+x}$

$$A = \int_{0}^{1} e^{x} - \frac{1}{1+x} dx = e^{x} - \ln |_{1+x}||_{x=0}^{1}$$

$$= e - \ln (2) - (e^{o} - \ln (1))$$

$$= e - \ln (2) - 1$$

Example 2:

Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

- 1. Check for intersection points (Solve $x^2 2x = 4 x^2$). There will be two, a and b; this is where the functions cross.
- 2. Between this two points, which function is on top (f(x)) and which function is on bottom (g(x)).
- 3. Calculate $\int_a^b f(x) g(x) dx$.

Check: What if you get a negative answer?

Find the area between $\sin x$ and $\cos x$ on $[-3\pi/4, 5\pi/4]$.

(Hint: There are several places where $\sin(x) = \cos(x)$. For example, $x = \pi/4$.)

sin(x) and cos(x) intersect at the angles corresponding to n(x)

-the line y=x:

$$= \left[\sin(x) + \cos(x) \right]_{x=\frac{3\pi}{4}}^{\pi/4} - \left[\sin(x) + \cos(x) \right]_{x=\pi/4}^{\pi/4}$$

Calculate the area under the curve $y = \arccos(x)$ from x = 0 to x = 1.

Hint: Since we don't know $\int \arccos(x) dx$, use the fact that $y = \arccos(x)$ if and only if $\cos(y) = x$. (1) Draw graphs of both $y = \arccos(x)$ and $x = \cos(y)$ on separate axes (the first with x on the horizontal axis, and the second with y on the horizontal axis).

(2) What integral, involving $\cos(y)$ (and endpoints for y's instead of x's, and with a dy instead of a dx) will compute the same area as $\int_0^1 \arccos(x) dx$?

| arccos(x) dx = ???

Calculate the area under the curve $y = \arcsin(x)$ from x = 0 to x = 1.

Hint: Similar to Example 4, but be careful! Be sure to draw the pictures before writing down the corresponding integrals!

$$A = \int_{0}^{\pi/2} 1 - \sin(q) dq$$

$$= \left[q + \cos(q) \right]_{q=0}^{\pi/2}$$

$$= \left[\pi/2 + 0 \right] - \left[0 + 1 \right] = \frac{\pi}{2} - 1$$

Answers

Example 1: $e - 1 - \ln(2)$ Example 2: 9

Example 3: $4\sqrt{2}$

Example 4: 1

Example 5: $\frac{\pi}{2} - 1$

Extra practice: Areas using definite integrals

- 1. Find the area of the region bounded by the curve xy 3x 2y 10 = 0, the x-axis, and the lines x = 3 and x = 4.
- 2. Find the area lying below the x-axis and above the parabola $y = 4x + x^2$.
- 3. Graph the curve $y = 2\sqrt{9-x^2}$ and determine the area enclosed between the curve and the x-axis.
- 4. Find the area bounded by the curve y = x(x-3)(x-5), the x-axis and the lines x=0 and x=5.
- 5. Find the area enclosed between the curve $y = \sin 2x$, $0 \le x \le \pi/4$ and the axes.
- 6. Find the area enclosed between the curve $y = \cos 2x$, $0 \le x \le \pi/4$ and the axes.
- 7. Find the area enclosed between the curve $y = 3\cos x$, $0 \le x \le \pi/2$ and the axes.
- 8. Show that the ratio of the areas under the curves $y = \sin x$ and $y = \sin 2x$ between the lines x = 0 and $x = \pi/3$ is 2/3.
- 9. Find the area enclosed between the curve $y = \cos 3x$, $0 \le x \le \pi/6$ and the axes.
- 10. Find the area enclosed between the curve $y = \tan^2 x$, $0 \le x \le \pi/4$ and the axes.
- 11. Find the area enclosed between the curve $y = \csc^2 x$, $0 \le x \le \pi/4$ and the axes.
- 12. Compare the areas under the curves $y = \cos^2 x$ and $y = \sin^2 x$ between x = 0 and $x = \pi$.
- 13. Graph the curve $y = x/\pi + 2\sin^2 x$ and find the area between the x-axis, the curve and the lines x = 0 and $x = \pi$.
- 14. Find the area bounded by $y = \sin x$ and the x-axis between x = 0 and $x = 2\pi$.
- 15. Find the area of the region bounded by the parabola $y^2 = 4x$ and the line y = 2x.
- 16. Find the area bounded by the curve y = x(2-x) and the line x = 2y.
- 17. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2.
- 18. Calculate the area of the region bounded by the parabolas $y = x^2$ and $x = y^2$.
- 19. Find the area of the region included between the parabola $y^2 = x$ and the line x + y = 2.
- 20. Find the area of the region bounded by the curves $y = \sqrt{x}$ and y = x.

- 21. Find the area of the part of the first quadrant which is between the parabola $y^2 = 3x$ and the circle $x^2 + y^2 6x = 0$.
- 22. Find the area of the region between the curves $y^2 = 4x$ and x = 3.
- 23. Use integration to find the area of the triangular region bounded by the lines y = 2x + 1, y = 3x + 1 and x = 4.
- 24. Find the area bounded by the parabola $x^2 2 = y$ and the line x + y = 0.
- 25. Find the area bounded by the curves $y = 3x x^2$ and $y = x^2 x$.
- 26. Graph the curve $y = (1/2)x^2 + 1$ and the straight line y = x + 1 and find the area between the curve and the line.
- 27. Find the area of the region between the parabolas $4y^2 = 9x$ and $3x^2 = 16y$.
- 28. Find the area of the region between the curves $x^2 + y^2 = 2$ and $x = y^2$.
- 29. Find the area of the region between the curves $y = x^2$ and $x^2 + 4(y 1) = 0$.
- 30. Find the area of the region between the circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.
- 31. Find the area of the region enclosed by the parabola $y^2 = 4ax$ and the line y = mx.
- 32. Find the area between the parabolas y = 4ax and $y^2 = 4ay$.
- 33. Find the area of the region between the two circles $x^2 + y^2 = 1$ and $(x 1)^2 + y^2 = 1$.
- 34. Find the area bounded by the curves y = x and $y = x^3$.
- 35. Graph $y = \sin x$ and $y = \cos x$ for $0 \le x \le \pi/2$ and find the area enclosed by them and the x-axis.