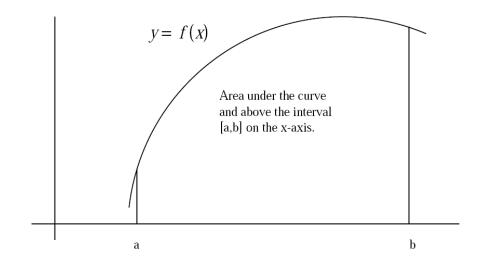
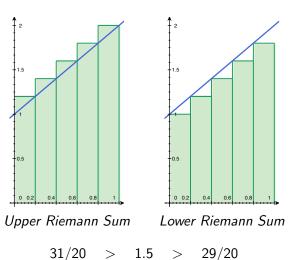


The Area Problem



Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of y = x + 1 on the interval [0,1].

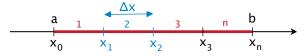


As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

Let y = f(x) be given and defined on an interval [a, b].



Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

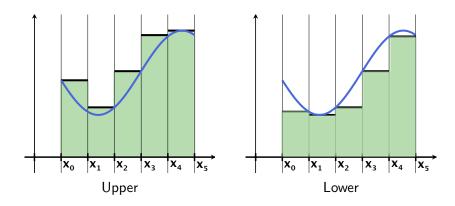
The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

$$U(f, P) = M_1 \Delta x + M_2 \Delta x + \cdots + M_n \Delta x.$$

The **Lower Riemann Sum** is: let m_i be the *minimum* value of the function on that ith interval, so

$$L(f, P) = m_1 \Delta x + m_2 \Delta x + \cdots + m_n \Delta x$$
.

Take the limit as $n \to \infty$ or $\Delta x \to 0$.



Sigma Notation

If m and n are integers with $m \le n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$\sum_{i=1}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \cdots + f(n)$$

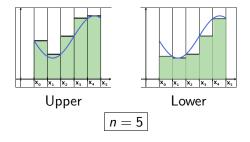
Examples:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
$$\sum_{i=1}^{n} \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$
$$\sum_{i=1}^{n-1} x^i = 1 + x + x^2 + x^2 + x^3 + x^4 + \dots + x^{n-1}$$

The Area Problem Revisited

Upper Riemann Sum
$$= \sum_{i=1}^{n} M_i \Delta x$$

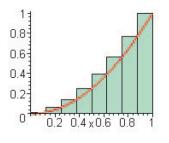
Lower Riemann Sum $= \sum_{i=1}^{n} m_i \Delta x$,

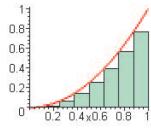
where M_i and m_i are, respectively, the maximum and minimum values of f on the ith subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$.



Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8, then with 100 subintervals of equal length to approximate the area under the graph of $y = f(x) = x^2$ on the interval [0,1].





$$= \left[\left(\frac{1}{3} \right)^{2} + \left(\frac{2}{8} \right)^{2} + \left(\frac{3}{8} \right)^{2} + \left(\frac{4}{8} \right)^{2} + \left(\frac{5}{8} \right)^{2} + \left(\frac{6}{8} \right)^{2} + \left(\frac{7}{8} \right)^{2} + \left(\frac{8}{8} \right)^{2} \right] \cdot \frac{1}{8}$$

$$\begin{cases} 1 & \text{if } 1 \\ \text{if } 2 \\ \text{if } 2 \\ \text{if } 2 \\ \text{if } 2 \\ \text{if } 3 \\ \text{if } 3 \\ \text{if } 3 \\ \text{if } 4 \\ \text{i$$

$$= \frac{2}{(3)^{2} \cdot 3} = \frac{1}{3} \frac{2}{(3)^{2}} \frac{(3)^{2}}{(3)^{2}} \frac{1}{(3)^{2}} \frac{1}{($$

$$L = \sum_{i=1}^{8} \left(\frac{i}{8}\right)^2 \cdot \frac{1}{8} = \frac{1}{8} \sum_{i=0}^{7} \left(\frac{i}{8}\right)^2$$

$$N=100$$

$$U=\sum_{i=1}^{100}\left(\frac{i}{100}\right)^{2}\frac{1}{100}$$

$$L=\sum_{i=1}^{100}\left(\frac{i-1}{100}\right)^{2}\cdot\frac{1}{100}$$

$$L=\sum_{i=1}^{100}\left(\frac{i-1}{100}\right)^{2}\cdot\frac{1}{100}$$

The Definite Integral

We say that f is integrable on [a, b] if there exists a number A such that

Lower Riemann Sum $\leq A \leq$ Upper Riemann Sum

for all n. We write the number as

$$A = \int_{a}^{b} f(x) dx$$

and call it the **definite integral** of f over [a, b].

Trickiness: Who wants to find maxima/minima over every interval? Especially as $n \to \infty$? Calculus nightmare!!

More Riemann Sums

Let f be defined on [a, b], and pick a positive integer n.

Let

$$\Delta x = \frac{b-a}{a}$$

Notice:

$$x + 0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $x_3 = a + 3\Delta x$,...

So let

$$x_i = a + i * \Delta x.$$

More Riemann Sums

Let

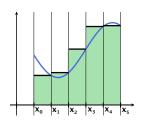
Let f be defined on [a, b], and pick a positive integer n.

$$\Delta x = \frac{b-a}{a}$$
 and $x_i = a + i * \Delta x$.

$$x_i = a + i * \Delta x$$

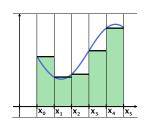
Then the Right Riemann Sum is

$$\sum_{i=1}^n f(x_i) \Delta x,$$



and the Left Riemann Sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x_i.$$



Integrals made easier

Theorem

If f is "Riemann integrable" on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

where c_i is **any** point in the interval $[x_{i-1}, x_i]$.

Punchline: We can calculate integrals by just using right or left sums! (instead of upper or lower sums)

Example: Set up left and right limit definitions of $\int_1^4 e^x dx$. Remember that

n is the number of pieces we've divided the interval into, and i indexes the terms in the sum (labels the rectangles).

Each piece:

$$\Delta x = \frac{4-1}{n} = \frac{3}{n}$$
 $x_i = 1 + i * \Delta x = 1 + \frac{3i}{n}$

So, the left Riemann sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=0}^{n-1} \left(e^{3/n} \right)^i$$

and the right Riemann sum is

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}$$

So

o
$$\int_{1}^{4} e^{x} dx = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=1}^{n-1} \left(e^{3/n} \right)^{i} = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}.$$

Example: Set up left and right limit definitions of $\int_1^4 e^x dx$. Remember that

n is the number of pieces we've divided the interval into, and i indexes the terms in the sum (labels the rectangles).

Each piece:

$$\Delta x = \frac{4-1}{n} = \frac{3}{n}$$
 $x_i = 1 + i * \Delta x = 1 + \frac{3i}{n}$

So, the left Riemann sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=0}^{n-1} \left(e^{3/n} \right)^i$$

and the right Riemann sum is

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}$$

So

$$\int_{1}^{4} e^{x} dx = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=0}^{n-1} \left(e^{3/n} \right)^{i} = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}.$$

$$e^{1+\frac{3i}{n}} = e^{1+\frac{3i}{n}} = e^{1+\frac{n}} = e^{1+\frac{3i}{n}} = e^{1+\frac{3i}{n}} = e^{1+\frac{3i}{n}} = e^{1+\frac{3$$

On your own:

1. Set up the left limit definition of $\int_{-1}^{5} \sin(x) dx$.

$$\lim_{n\to\infty}\sum_{i=0}^{n-1}\sin(-1+\tfrac{6i}{n})\left(\tfrac{6}{n}\right)$$

2. Rewrite the following expressions as $\int_a^b f(x)dx$ by identifying f(x), a, and b. Also, identify if I've used the left or right Riemann sums.

(a)
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left((6 + \frac{7i}{n})^3 + 2 \right) \left(\frac{7}{n} \right)$$
.

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2 + \frac{i}{n}}{2 - \frac{i}{n}} (\frac{1}{n}).$$

Left:
$$\int_{6}^{13} x^3 + 2 \, dx$$
.

Right:
$$\int_0^1 \frac{2+x}{2-x} \, dx.$$

On your own:

- 1. Set up the left limit definition of $\int_{-1}^{5} \sin(x) dx$.
- 2. Rewrite the following expressions as $\int_a^b f(x)dx$ by identifying f(x), a, and b. Also, identify if I've used the left or right Riemann sums.

(a)
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left((6 + \frac{7i}{n})^3 + 2 \right) \left(\frac{7}{n} \right)$$

(b)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{2+\frac{i}{n}}{2-\frac{i}{n}} \left(\frac{1}{n}\right)$$

1.
$$\Delta x = \frac{5 - (-1)^2}{n} = \frac{6}{n}$$
 $x_i = a + i \Delta x = -1 + \frac{6i}{n}$

So $\int_{-1}^{6} \sin(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x = \lim_{n \to \infty} \sum_{i=0}^{n-1} \sin(-1 + \frac{6i}{n}) \cdot \frac{6}{n}$

2. Gross:
$$\Delta x = \frac{7}{N}$$
 so $b-a=7 \rightarrow b=a+7$

$$X_i = 6 + \frac{7i}{N} = 6 + i\Delta X \rightarrow a=6 \rightarrow b=13.$$

$$\int_{6}^{13} x^3 + 2 dx$$

3. Guess:
$$\Delta x = \ln \Rightarrow b - a = 1 \Rightarrow b = a + 1$$
.
 $x_i = \frac{i}{n}$
 $x_i = 2 + i \ln$
 $2 - \frac{i}{n} = 2 - (2 + \frac{i}{n}) + 2$

$$a = 0$$

$$\int_{0}^{1} \frac{2 + x}{2 - x} dx$$

$$\int_{0}^{3} \frac{x}{2 + x} dx$$

$$\int_{2}^{3} \frac{x}{4 + x} dx$$

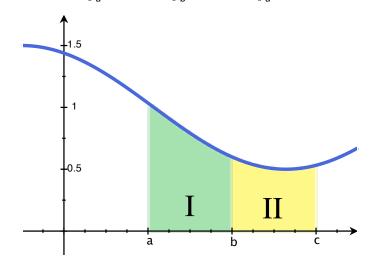
Properties of the Definite Integral

$$1. \int_a^a f(x) dx = 0.$$

- 2. If f is integrable and
 - (a) $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ equals the area of the region under the graph of f and above the interval [a, b];
 - (b) $f(x) \le 0$ on [a, b], then $\int_a^b f(x) dx$ equals the **negative** of the area of the region between the interval [a, b] and the graph of f.

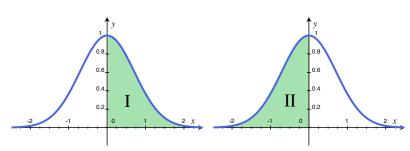
3.
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$
.

4. If a < b < c, $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$



5. If f is an **even** function, then

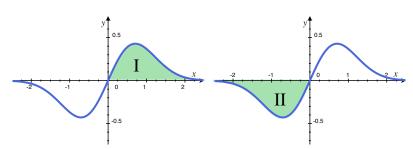
$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx.$$



 $\mathsf{Area}\ \mathrm{I} = \mathsf{Area}\ \mathrm{II}$

6. If f is an **odd** function, then

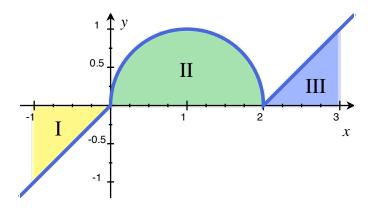
$$\int_{-a}^{a} f(x) dx = 0.$$



 $\mathsf{Area}\ I = \mathsf{Area}\ II$

Example

If
$$f(x) = \begin{cases} x, & x < 0, \\ \sqrt{1 - (x - 1)^2}, & 0 \ge x \le 2, \text{ what is } \int_{-1}^3 f(x) dx? \\ x - 2, & x \ge 2, \end{cases}$$



Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval [a,b]. Then there exists c in [a,b] such that

$$\int_a^b f(x)dx = (b-a)f(c).$$

Definition

The average value of a continuous function on the interval [a, b] is

$$\frac{1}{b-a}\int_a^b f(x)dx$$
.