
Modelling Accumulations



The purpose of calculus is twofold:

1. to find how something is changing, given what it’s doing;

2. to find what something is doing, given how it’s changing.

We did derivatives

(a) algebraically (derivative rules, what is the function?), and

(b) geometrically (slopes, increasing/decreasing, what does it
look like?)

We did antiderivatives algebraically (what is the function?).
Today: geometric meaning of antiderivatives.



If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.

Another way: Area = 8
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(graph of speed, i.e. graph of derivative)



If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far
have you gone?

Area = 2+4= 6
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1 3 4(graph of speed, i.e. graph of derivative)



If you travel at
.5 mph for 1 hour,
1 mph for 1 hour,
1.5 mph for 1 hour,
2 mph for 1 hour,

how far have you gone?

Area = .5 + 1 + 1.5 + 2 = 5
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If you travel at
.175 mph for 1/4 hour,
.25 mph for 1/4 hour,

. . .
2 mph for 1/4 hour,

how far have you gone?

Area = .175 ⇤ .25 + .25 ⇤ .25 + · · ·+ 2 ⇤ .25 = 4.25
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If you travel at 1

2

t mph for 4 hours, how far have you gone?

Check our answer using antiderivatives from last time:

position = s(t) =

Z
1

2
t dt =

1

4
t

2 + C

So distance = s(4)� s(0) = 1

4

⇤ 16 + C � ( 1
4

⇤ 0 + C ) = 4 X

Area = 4 (it’s a triangle)
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Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Choose another sequence of speeds:

y = 1

8

x

2, Area = ???

2

2

1

1 3 4



Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Area = ???
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 1: pick the highest point
Area ⇡ 8
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 2: pick two points
Area ⇡ 1+4 = 5
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 3: pick four points
Area ⇡ 1

8

+ 1

2

+ 9

8

+ 2 = 3.75
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 4: pick eight points
Area ⇡ 1

32

⇤ 1

2

+ 1

8

⇤ 1

2

+ · · ·+ 2 ⇤ 1

2

= 3.1875
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 5: pick sixteen points
Area ⇡ 2.921875
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Estimate the area under the curve
y = 1

8x
2 between x = 0 and x = 4:

Estimate 6: pick thirty two points
Area ⇡ 2.79296875
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Estimating the Area of a Circle with r = 1

Divide it up into rectangles:

-1 0 1

-1

1

# rect. Area
4

2*1 = 2

4*2

p
3 + 1 ⇡ 2.732

4*3

2

3

+ 8

p
2+4

p
5

9

⇡ 2.918

4*4

2.996

4*5

3.037
4*100 3.140
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Estimating the Area of a Circle with r = 1

Divide it up into rectangles:
Estimate area of the half circle (f (x) =

p
1� x

2) and mult. by 2.
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Divide it up into rectangles:
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p
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Estimating the Area of a Circle with r = 1

Divide it up into rectangles:
Estimate area of the half circle (f (x) =

p
1� x

2) and mult. by 2.
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Numerical Integration

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to 1
i.e. let the base of the rectangle for to 0.

Good for:

1. Approximating accumulated change when the antiderivative is
unavailable.

2. Making precise the notion of ‘area’ (we’ll also to lengths and
volumes)



Example: estimating volume using data
A small dam breaks on a river. The average flow out of the stream
is given by the following:

hours m

3/s hours m

3/s hours m

3/s
0 150 4.25 1460 8.25 423

0.25 230 4.5 1350 8.5 390

0.5 310 4.75 1270 8.75 365

0.75 430 5 1150 9 325

1 550 5.25 1030 9.25 300

1.25 750 5.5 950 9.5 280

1.5 950 5.75 892 9.75 260

1.75 1150 6 837 10 233

2 1350 6.25 770 10.25 220

2.25 1550 6.5 725 10.5 199

2.5 1700 6.75 658 10.75 188

2.75 1745 7 610 11 180

3 1750 7.25 579 11.25 175

3.25 1740 7.5 535 11.5 168

3.5 1700 7.75 500 11.75 155

3.75 1630 8 460 12 150

4 1550



Example: estimating volume using data

A small dam breaks on a river. The average flow out of the stream
is given by the following:

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

500

1000

1500



Over each time interval, we estimate the volume of water by
Average rate ⇥ 900 s

2 2.25 2.5 2.75

500

1000

1500

V = 1500m3/s*900s



Over each time interval, we estimate the volume of water by
Average rate ⇥ 900 s

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

500
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1500



Over each time interval, we estimate the volume of water by
Average rate ⇥ 900 s

hours m

3

hours m

3

hours m

3

0 135000 4.25 1314000 8.25 380700

0.25 207000 4.5 1215000 8.5 351000

0.5 279000 4.75 1143000 8.75 328500

0.75 387000 5 1035000 9 292500

1 495000 5.25 927000 9.25 270000

1.25 675000 5.5 855000 9.5 252000

1.5 855000 5.75 802800 9.75 234000

1.75 1035000 6 753300 10 209700

2 1215000 6.25 693000 10.25 198000

2.25 1395000 6.5 652500 10.5 179100

2.5 1530000 6.75 592200 10.75 169200

2.75 1570500 7 549000 11 162000

3 1575000 7.25 521100 11.25 157500

3.25 1566000 7.5 481500 11.5 151200

3.5 1530000 7.75 450000 11.75 139500

3.75 1467000 8 414000 12 135000

4 1395000 total=33,319,800



Example: estimating volume under a function of 2 variables

A tent is raised and has height given by xy over the 2⇥ 2 grid
where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?



Example: estimating volume under a function of 2 variables

A tent is raised and has height given by xy over the 2⇥ 2 grid
where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!
Volume = base *height.

0 1 2

1

2
x y height = xy volume
0 0 0 0 * 1
0 1 0 0 * 1
1 0 0 0 * 1
1 1 1 1 * 1

total volume ⇡ 1



Example: estimating volume under a function of 2 variables

A tent is raised and has height given by xy over the 2⇥ 2 grid
where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!
Volume = base *height.

0 1 2

1

2
x y height = xy volume
1 1 1 1 * 1
1 2 2 2 * 1
2 1 2 2 * 1
2 2 4 4 * 1

total volume ⇡ 9



Example: estimating volume under a function of 2 variables

A tent is raised and has height given by xy over the 2⇥ 2 grid
where 0 < x < 2 and 0 < y < 2. What is the volume of the tent?

Estimate via boxes!
Volume = base *height.

0 1 2

1

2
x y height = xy volume
.5 .5 .25 .5 * 1
.5 1.5 .75 .75 * 1
1.5 .5 .75 .75 * 1
1.5 1.5 2.25 2.25 * 1

total volume ⇡ 4.25



Example: functions without nice antiderivatives

What is
R
e

�x

2

dx?

From Wikipedia: “In mathematics, the error function (also called the Gauss error function) is a special function

(non-elementary) of sigmoid shape which occurs in probability, statistics and partial di↵erential equations. ”



Other methods of numerical integration
We did rectangles, but we could use other shapes (that we know how to

integrate under) to better represent the shape of the function.

f (x) = e

�x

2

between x = �2 and x = 2: A = 1.76416 . . .

-2 -1 1 2

0.5

1

For n pieces,

for rectangles pick n points to draw n rectangles; A ⇡ 1.75407 . . .

we could also use trapezoids, with n + 1 points;

A ⇡ 1.75407 . . .

we could also use parabolas, with 2n + 1 points;

A ⇡ 1.76362 . . .

(We call the parabolas Simpson’s rule)
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What you need to know
⇤ For rectangles, know how to approximate by hand.
⇤ For trapezoids, also know by hand:
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0.5

1

Area ( trapeziod ) = b ⇤ h

1

+h

2

2

For example: b = 1, h

1

= f (�1), h

2

= f (0),

so A

2

= 1 ⇤ f (�1)+f (0)

2

A = 1 ⇤
f (�2) + f (�1)

2

+ 1 ⇤
f (�1) + f (0)

2

+ 1 ⇤
f (0) + f (1)

2

+ 1 ⇤
f (1) + f (2)

2

= 1

2

⇤ [f (�2) + f (�1) + f (�1) + f (0) + f (0) + f (1) + f (1) + f (2)]

⇤ For Simpson’s rule (parabolas), know how to use applet.
Warning about conventions: In the book and webwork, n is the number of

“subintervals”. In class and in the applet, n is the number of parabolas. So

if webwork says n = 6, plug in n = 3 to the applet.
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“subintervals”. In class and in the applet, n is the number of parabolas. So

if webwork says n = 6, plug in n = 3 to the applet.
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