Going between graphs of functions and their derivatives:

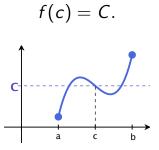
Mean value theorem, Rolle's theorem, and intervals of increase and decrease

Recall: The Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b].

If
$$f(a) < C < f(b)$$
 or $f(a) > C > f(b)$,

then there is at least one point c in the interval [a, b] such that

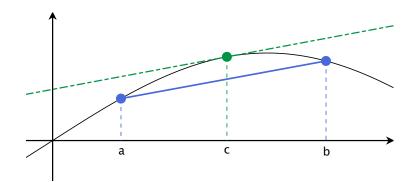


The Mean Value Theorem

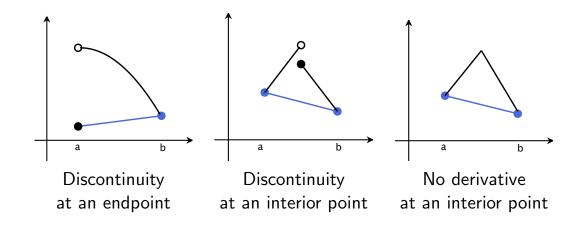
Theorem

Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$



Bad examples



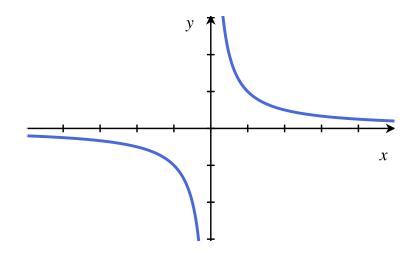
Examples

Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

How about to f(x) = |x| on [1, 5]?

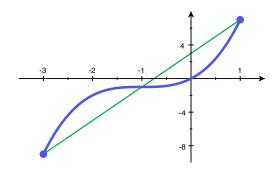
Example

Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?



Example

Verify the conclusion of the Mean Value Theorem for the function $f(x) = (x+1)^3 - 1$ on the interval [-3, 1].



- **Step 1:** Check that the conditions of the MVT are met.
- **Step 2:** Calculate the slope *m* of the line joining the two endpoints.
- **Step 3:** Solve the equation f'(x) = m.

Intervals on increase/decrease

Formally,		$\frac{f(x+h)-f(x)}{h}$	$\lim_{h ightarrow 0} \sim$
f is <i>increasing</i> if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.		pos.	pos. or 0 (non-neg)
f is <i>nondecreasing</i> if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$.		non-neg.	non-neg.
f is <i>decreasing</i> if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.		neg.	non-pos.
f is <i>nonincreasing</i> if $f(x_1) \ge f(x_2)$ whenever $x1 < x2$.		non-pos.	non-pos.

So we can calculate some of the "shape" of f(x) by knowing when its derivative is positive, negative, and 0!

Sign of the derivative

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h)-f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

Case 1: *h* is positive.

So x + h > x, which implies f(x + h) - f(x) > 0. So f(x + h) - f(x)

$$\frac{f(x+h)-f(x)}{h}>0.$$

Case 2: *h* is negative.

So
$$x + h < x$$
, which implies $f(x + h) - f(x) < 0$.
So $\frac{f(x + h) - f(x)}{h} > 0$.

So the difference quotient is positive!

Example

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to f(x).

Example

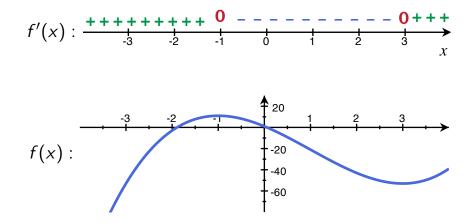
Find the intervals on which the function

 $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

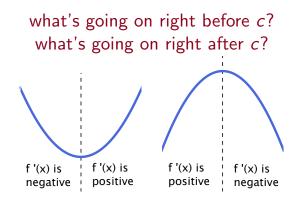
Step 3: Bring that information back to f(x).



If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

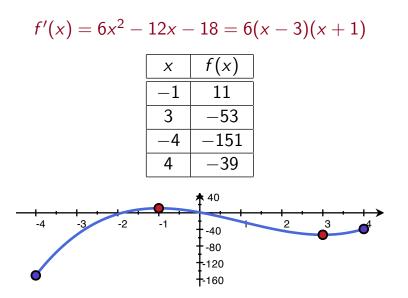
The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point *c* where f'(c) = 0



Example

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.

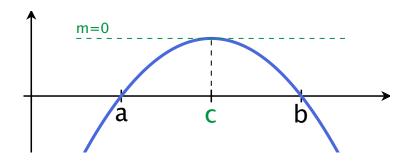


Rolle's Theorem

Theorem

Suppose that the function f is **continuous** on the closed interval [a, b], **differentiable** on the open interval (a, b), and a and b are both **roots** of f.

Then there is at least one point c in (a, b) where f'(c) = 0.



(In other words, if g didn't jump, then it had to turn around)

Back to Newton's method

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

For example: Find the roots of $f(x) = x^5 - 3x + 1$. -2 -1 If *x*₀ is... then the x_i 's get closer to... -1.3888-1.38880.3347 1.2146 1.2146 .7 .5 .6 -.9 -.8 -.7 -.6 $x_0 =$ 0.3. . . 0.3. . . 1.2. . . 0.3. . . 0.3. . . -1.3. . . 1.2 . . . $x_i \rightarrow$ -20 -10 -50 -100 -1000 -10000 $x_0 =$ -1.3. . . -1.3. . . -1.3. . . -1.3. . . -1.3. . . -1.3. . . $x_i \rightarrow$ 10 20 50 100 1000 10000 100000 $x_0 =$ 1.2. . . 1.2. . . 1.2. . . 1.2. . . 1.2. . . 1.2. . . 1.2. . . $x_i \rightarrow$

But how do we know when we've found all of them?

After plugging in lots of x_0 's, we've only found three roots. But there could be up to 5! How do we know we're not just very unlucky?

Use Rolle's Theorem to show that $f(x) = x^5 - 3x + 1$ has exactly three real roots!

- **Step 1:** Show that there are at *most* three roots.
- **Step 2:** Show that there are at *least* three roots. Two methods:
 - (1) Use Newton's method to root out three roots, or
 - (2) find four points f(x) which alternate signs, and use the

intermediate value theorem.

(IVT: If f(x) is cont. and f(a) < C < f(b), then there's a c btwn. a and b where f(c) = C) On your own:

 Do an analysis of increasing/decreasing on f(x). How many times does f(x) turn around? Conclude: what is an upper bound on the number of roots?

2. Find the heights of the critical points.

Using the intermediate value theorem, what is a lower bound on the number of roots? Can you do better if you also find the height of the function at a big positive number and a big negative number?

3. Conclude: How many real roots does f(x) have?

4. Bonus:

Using the approximations from before, sketch a graph.