Going between graphs of functions and their derivatives:

Mean value theorem, Rolle's theorem, and intervals of increase and decrease

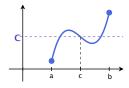
Recall: The Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b].

If
$$f(a) < C < f(b)$$
 or $f(a) > C > f(b)$,

then there is at least one point c in the interval [a, b] such that

$$f(c) = C$$
.

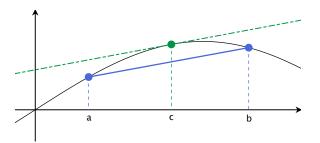


The Mean Value Theorem

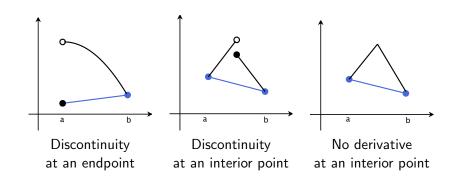
Theorem

Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$



Bad examples



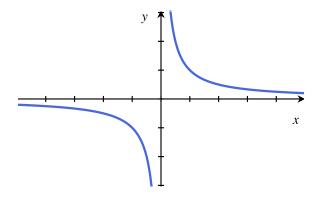
Does the mean value theorem apply to f(x) = |x| on [-1, 1]?

(No! Because f(x) is not differentiable at x = 0.)

How about to f(x) = |x| on [1, 5]?

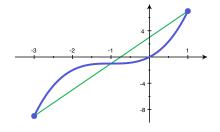
(Yes! Because f(x) = x on this domain, which is differentiable.)

Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?



ANY closed interval on the domain!

Verify the conclusion of the Mean Value Theorem for the function $f(x) = (x+1)^3 - 1$ on the interval [-3,1].



- **Step 1:** Check that the conditions of the MVT are met.
- **Step 2:** Calculate the slope *m* of the line joining the two endpoints.
- **Step 3:** Solve the equation f'(x) = m.

2.
$$f(3) - f(-3) = [(1+1)^3 - 1] - [(-3+1)^3 - 1]$$

$$= (8-1) - (-8-1)$$

Intervals on increase/decrease

Formally,

f is increasing if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.

f is nondecreasing if $f(x_1) \le f(x_2)$ whenever $x_1 < x_2$.

$$f$$
 is decreasing if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

f is nonincreasing if $f(x_1) \ge f(x_2)$ whenever x1 < x2.

Sign of the derivative

If f(x) is **increasing**, what is the sign of the derivative? Look at the difference quotient:

$$\frac{f(x+h)-f(x)}{h}$$

The derivative is a two-sided limit, so we have two cases:

Case 1: h is positive.

So
$$x + h > x$$
, which implies $f(x + h) - f(x) > 0$.

So

$$\frac{f(x+h)-f(x)}{h}>0.$$

Case 2: h is negative.

So
$$x + h < x$$
, which implies $f(x + h) - f(x) < 0$.

So

$$\frac{f(x+h)-f(x)}{h}>0.$$

So the difference quotient is positive!

Intervals on increase/decrease

Formally,	$\frac{f(x+h)-f(x)}{h}$	$\lim_{h o 0} \sim$
f is increasing if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.	pos.	pos. or 0 (non-neg)
f is nondecreasing if $f(x_1) \le f(x_2)$ whenever $x_1 < x_2$.	non-neg.	non-neg.
f is decreasing if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.	neg.	non-pos.
f is nonincreasing if $f(x_1) \ge f(x_2)$ whenever $x1 < x2$.	non-pos.	non-pos.

So we can calculate some of the "shape" of f(x) by knowing when its derivative is positive, negative, and 0!

On what interval(s) is the function $f(x) = x^3 + x + 1$ increasing or decreasing?

Step 1: Calculate the derivative.

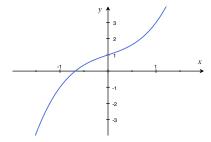
$$f'(x) = 3x^2 + 1$$

Step 2: Decide when the derivative is positive, negative, or zero.

f'(x) is always positive!

Step 3: Bring that information back to f(x).

f(x) is always increasing!

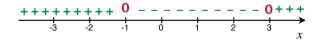


Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative.

$$f'(x) = 6x^2 - 12x - 18 = 6(x - 3)(x + 1)$$

Step 2: Decide when the derivative is positive, negative, or zero.



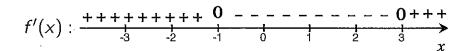
Step 3: Bring that information back to f(x). f(x) is increasing, then decreasing, then increasing.

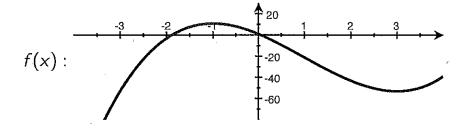
Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Step 1: Calculate the derivative.

Step 2: Decide when the derivative is positive, negative, or zero.

Step 3: Bring that information back to f(x).

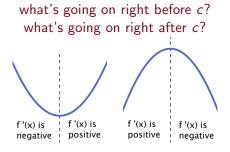




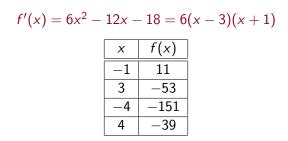
If f is continuous on a closed interval [a, b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

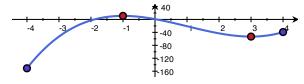
The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point c where f'(c) = 0



For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.



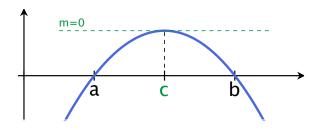


Rolle's Theorem

Theorem

Suppose that the function f is continuous on the closed interval [a, b], differentiable on the open interval (a, b), and a and b are both roots of f.

Then there is at least one point c in (a, b) where f'(c) = 0.



(In other words, if g didn't jump, then it had to turn around)

Back to Newton's method

Remember: Newton's method helped us fine roots of functions.

Pick an x_0 to start. To get x_{i+1} , follow the tangent line to f(x) at x_i down to it's x-intercept. The x_i 's get closer and closer to a root of f.

But how do we know when we've found all of them? For example: Find the roots of $f(x) = x^5 - 3x + 1$.

				<i>,</i>				
If x_0 is	5	-2	-1	0	1	2		
then the x_i 's get closer to								
	-	-1.3888	-1.3888	0.3347	1.2146	1.2146		
$x_0 =$	9	8	7	6	.5	.6	.7	
$x_i \rightarrow$	-1.3	1.2	1.2	0.3	0.3	0.3	0.3	
$x_0 =$	-10	-20	-50	-100	-1000	-1000	00	
$x_i \rightarrow$	-1.3	-1.3	-1.3	-1.3	-1.3	1.3.		
$x_0 =$	10	20	50	100	1000	10000	100000	

After plugging in lots of x_0 's, we've only found three roots. But there could be up to 5! How do we know we're not just very unlucky?

 $x_i \rightarrow 1.2... 1.2... 1.2... 1.2... 1.2... 1.2...$

Use Rolle's Theorem to show that $f(x) = x^5 - 3x + 1$ has exactly three real roots!

Step 1: Show that there are at *most* three roots.

Step 2: Show that there are at *least* three roots.

Two methods:

- (1) Use Newton's method to root out three roots, or
- (2) find four points f(x) which alternate signs, and use the intermediate value theorem.

(IVT: If f(x) is cont. and f(a) < C < f(b), then there's a c btwn. a and b where f(c) = C)

On your own:

1. Do an analysis of increasing/decreasing on f(x).

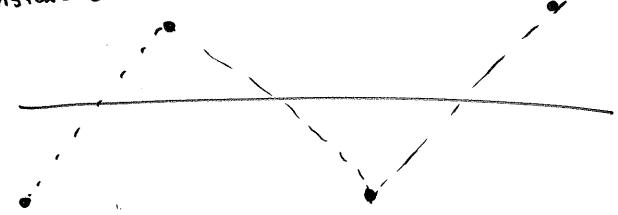
How many times does f(x) turn around? Conclude: what is an upper bound on the number of roots?

2. Find the heights of the critical points.

Using the intermediate value theorem, what is a lower bound on the number of roots? Can you do better if you also find the height of the function at a big positive number and a big negative number?

- 3. Conclude: How many real roots does f(x) have?
- 4. **Bonus:**Using the approximations from before, sketch a graph.

instead of Newton's: Find these pla



$$\frac{x^{4}=\frac{3}{5}}{x=\pm(\frac{3}{5})^{1/4}} \pm \frac{100}{5000} \text{ real}$$

* * *

a) at most 3 roots!