Newton's Method and Linear Approximations

Newton's Method

- Step 1: Pick a place to start. Call it x_0 .
- Step 2: The tangent line at x_0 is $y = f(x_0) + f'(x_0) * (x x_0)$. To find where this intersects the x-axis, solve

$$0 = f(x_0) + f'(x_0) * (x - x_0)$$
 to get $x = x_0 - \frac{f(x_0)}{f'(x_0)}$.

This value is your x_1 .

Step 3: Repeat with your new x-value. In general, the 'next' value is

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Step 4: Keep going until your x_i 's stabilize.

What they stabilize to is an approximation of your root!

Goal: Where is f(x) = 0?

Newton's Method for finding roots

Goal: Where is f(x) = 0?

Newton's Method for finding roots

Goal: Where is f(x) = 0?

Newton's Method for finding roots

Goal: Where is f(x) = 0?

$$f(x) = x^{7} + 3x^{3} + 7x^{2} - 1$$
$$f'(x) = 7x^{6} + 9x^{2} + 14x$$

i	Xi	$f(x_i)$	$f'(x_i)$	tangent line	<i>x</i> -intercept
0	0.5	1.133	9.359	y = 1.133 + 9.359(x - 0.5)	0.379
1	0.379	0.170	6.619	y = 0.170 + 6.619(x - 0.379)	0.353
2	0.353	0.007	6.084	y = 0.007 + 6.084(x - 0.353)	0.352
3	0.352	0.00001	6.060	y = 0.00001 + 6.060(x - 0.352)	0.352

Caution!

Bad places to pick: Critical points! (where f'(x)=0)

Tangent line has no x-intercept!

Even *near* critical points, the algorithm goes much slower. Just stay away!

Back to the example:

 $r_1 pprox r_2 pprox r_3 pprox 0.352$

Linear approximations

If f(x) is differentiable at a, then the tangent line to f(x) at x = a is

$$y = f(a) + f'(a) * (x - a).$$

For values of x near a, then

$$f(x) \approx f(a) + f'(a) * (x - a).$$

This is the *linear approximation* of f about x = a. We usually call the line L(x).

Approximate $\sqrt{5}$:

Our last approximation told us

$$\sqrt{5} \approx L(5) = 1 + \frac{1}{2}(5-1) = 3$$

This isn't great... $(3^2 = 9)$

Better: Use the linear approximation about x = 4!

Even better approximations...

The linear approximation is the line which satisfies

$$L(a) = f(a) + f'(a)(a - a) = \boxed{f(a)}$$

and

$$L'(a) = \frac{d}{dx} \left(f(a) + f'(a)(x-a) \right) = \boxed{f'(a)}$$

A **better** approximation might be a quadratic polynomial $p_2(x)$ which **also** satisfies $p_2''(a) = f''(a)$:

$$p_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$$

or a cubic polynomial $p_3(x)$ which also satisfies $p_3^{(3)}(a) = f^{(3)}(a)$:

$$p_3(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{2*3}f^{(3)}(a)(x-a)^3$$

and so on...

These approximations are called **Taylor polynomials** (read §2.14)