Implicit differentiation

Warm-up

Suppose $f(x)$ is a differentiable function. Then in terms of $x, f(x)$ and $f^{\prime}(x)$, what are

1. $\frac{d}{d x}(x f(x))=f(x)+x f^{\prime}(x)$
2. $\frac{d}{d x}(f(x)+\sin (x))=f^{\prime}(x)+\cos (x)$
3. $\frac{d}{d x}(f(x) / x)=f^{\prime}(x) / x-f(x) / x^{2}$
4. $\frac{d}{d x}\left(f^{2}(x)\right)=2 f(x) f^{\prime}(x)$
5. $\frac{d}{d x}\left(1+x f^{4}(x)\right)=f^{4}(x)+4 x f^{3}(x) f^{\prime}(x)$
6. $\frac{d}{d x}\left(\cos \left(x e^{f(x)}\right)\right)=-\sin \left(x e^{f(x)}\right) *\left(1+x f^{\prime}(x)\right) * e^{f(x)}$

Implicit functions

An implicit function is something that can we written as

$$
F(x, y)=c .
$$

So it might not be a function, but it is a curve in the $x-y$ plane.
For example, $x^{2}+y^{2}=1$.
Question:
What is the slope of the tangent line to the unit circle at $x=\frac{\sqrt{2}}{2}$?
Using calculus so far...
Solve for y :

$$
y= \pm \sqrt{1-x^{2}}
$$

Take a derivative:

$$
\frac{d y}{d x}=-\frac{ \pm 2 x}{2 \sqrt{1-x^{2}}}
$$

Plug in the point:

$$
\left.\frac{d y}{d x}\right|_{x=\frac{\sqrt{2}}{2}}=-\frac{ \pm \sqrt{2}}{2 \sqrt{1-1 / 2}}=\mp 1
$$

But which is which??
... we can do better.

Implicit differentiation

Instead, think of y as a function of x : let $y=f(x)$.
Then rewrite

$$
x^{2}+y^{2}=1 \quad \text { as } \quad x^{2}+f^{2}(x)=1
$$

(1) Take a derivative of both sides independently:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+f^{2}(x)\right) & =2 x+2 f(x) * f^{\prime}(x)=2 x+2 y \frac{d y}{d x} \\
\frac{d}{d x} 1 & =0
\end{aligned}
$$

(2) So $2 x+2 y \frac{d y}{d x}=0$
(3) solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=-2 x / 2 y=-x / y
$$

(4) Plug in points:

x	y	$\frac{d y}{d x}$
$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1

if $\quad x=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

$$
\begin{gathered}
\left(\frac{1}{\sqrt{2}}\right)^{2}+y^{2}=1 \\
\frac{1}{2}+y^{2}=
\end{gathered}
$$

$$
\rightarrow y^{2}=\frac{1}{2}
$$

So $y= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$

$$
-\frac{x}{y}=-\frac{\cos (\theta)}{\sin (\theta)}=-\cot (\theta)
$$

Implicit differentiation

In general, given $F(x, y)=c$, calculate $\frac{d y}{d x}$ in terms of x and y.
Step 1: Take derivative of both sides versus x. (don't forget the chain rule!)
Step 2: Set the two sides equal.
Step 3: Solve for $\frac{d y}{d x}$.
Step 4: If applicable, plug in points.

For example, calculate $\frac{d y}{d x}$ if $x y^{2}=3$.
(1) $\frac{d}{d x} x y^{2}=1 * y^{2}+x *\left(2 y * \frac{d y}{d x}\right) \quad$ and $\quad \frac{d}{d x} 3=0$
(2) So $y^{2}+2 x y \frac{d y}{d x}=0$
(3) and so $\frac{d y}{d x}=-y^{2} / 2 x y=\frac{-y}{2 x}$

Examples

Calculate $\frac{d y}{d x}$ if...
(a) $x y=1$
(b) $y+\sin (x)=x y$
(c) $y / x=x y^{4}+1$
(d) $\cos \left(x e^{y}\right)=y^{2}$

Then $\frac{d x}{d y}$ for (a) and (b) as well. To do this, now pretend that $x=f(y)$. See a pattern?
In general,

$$
\frac{d y}{d x}=1 /\left(\frac{d x}{d y}\right) .
$$

For reference, the graphs look like (a)
(b)

(c)
(d)

(a) $x y=1$:

$$
\begin{aligned}
\frac{d}{d x}(x y) & =y+x y^{\prime} \\
=\frac{d}{d x}(1) & =0
\end{aligned}
$$

So $\quad x y^{\prime}=-y$

$$
y^{\prime}=-y / x
$$

(b) $y+\sin (x)=x y$

$$
\begin{aligned}
& \frac{d}{d x}(y+\sin (x))=y^{\prime}+\cos (x) \\
= & \frac{d}{d x}(x y)=y+x y^{\prime}
\end{aligned}
$$

so $y^{\prime}-x y^{\prime}=y-\cos (x)$

$$
\begin{aligned}
& y^{\prime}(1-x)= \\
& \text { so } y^{\prime}=\frac{y-\cos (x)}{1-x}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y \mid x=x y^{4}+1 \\
& \frac{d}{d x}(y / x)=y^{\prime} / x-y / x^{2} \\
& =\frac{d}{d x}\left(x y^{4}+1\right)=y^{4}+4 x y^{3} y^{\prime} \\
& \text { So } \\
& y^{\prime}\left(\frac{1}{x}\right)-y^{\prime} \cdot 4 x y^{3}=\frac{y}{x^{2}}+y^{4} \\
& y^{\prime}\left(\frac{1}{x}-4 x y^{3}\right)= \\
& y^{\prime}=\frac{y / x^{2}+y^{4}}{\frac{1}{x}-4 x y^{3}}
\end{aligned}
$$

(d)

$$
\text { d) } \begin{aligned}
& \cos \left(x e^{y}\right)=y^{2} \\
& \frac{d}{d x}\left(\cos \left(x e^{y}\right)\right)=-\sin \left(x e^{y}\right) \cdot\left(e^{y}+x e^{y} y^{\prime}\right) \\
&\left.=-\sin \left(x e^{y}\right) e^{y}-y^{\prime}\right) \sin \left(x^{y}\right) \cdot x e^{y} \\
&=\frac{d}{d x} y^{2}=2 y y^{\prime} \\
& \text { so } y^{\prime}=-\frac{\sin \left(x e^{y}\right) \cdot e^{y}}{2 y+\sin \left(x e^{y}\right) \cdot x e^{y}}
\end{aligned}
$$

(a) versos y

$$
\begin{aligned}
\frac{d}{d y}(x y) & =\frac{d x}{d y} \cdot y+x \cdot 1 \\
=\frac{d}{d y}(1) & =0 \\
& \frac{d x}{d y} \cdot y+x=0
\end{aligned}
$$

$$
\text { so } \frac{d x}{d y}=-x / y
$$

$$
\begin{aligned}
& \text { (b) } y+\sin (x)=x y \text { versus } y \\
& \frac{d}{d y}(y+\sin (x))=1+\cos (x) \cdot \frac{d x}{d y} ; \\
& =\frac{d}{d y}(x y)=\left\{\frac{d x^{\prime}}{d y} \cdot y+x\right. \\
& \frac{d x}{d y}=y-\frac{d x}{d y} \cdot \cos (x)=1-x \\
& \frac{d x}{d y}\left(y-\frac{\cos (x))=}{\frac{d x}{d y}=\frac{1-x}{y-\cos (x)}=\frac{x-1}{\cos (x)-y}}\right.
\end{aligned}
$$

Vertical and horizontal tangent lines

We saw that if $x^{2}+y^{2}=1$, then $\frac{d y}{d x}=-x / y$.
Question 1: At which points is the tangent line horizontal?
Solve $0=\frac{d y}{d x}$:

$$
0=-x / y \quad \text { if } x=0
$$

To get the y-coordinate, plug back in and solve:

$$
0^{2}+y^{2}=1, \quad \text { so } y= \pm 1
$$

Answer: at $(0,1)$ and $(0,-1)$.
Question 2: At which points is the tangent line vertical? Solve: where is $\frac{d y}{d x}$ approaching $\pm \infty$? At $y=0$! To get the x-coordinate, plug back in and solve:

$$
x^{2}+0^{2}=1, \quad \text { so } x= \pm 1
$$

Answer: at $(1,0)$ and $(-1,0)$.

Other tangent lines

We saw that if $x^{2}+y^{2}=1$, then $\frac{d y}{d x}=-x / y$.
Question 3: Find the equations for all lines which are tangent to the unit circle and have slope $\sqrt{3}$.

Solution: Solve $\sqrt{3}=\frac{d y}{d x}=-x / y$.
This happens when

$$
\cos (\theta) / \sin (\theta)=x / y=-\sqrt{3}
$$

So $\theta=-\pi / 6$ or $\theta=\pi-\pi / 6=5 \pi / 6$.

At $\theta=-\pi / 6$, we have $x=\sqrt{3} / 2, y=-1 / 2$, so the tangent line is

$$
y=\sqrt{3}(x-\sqrt{3} / 2)-1 / 2
$$

At $\theta=5 \pi / 6$, we have $x=-\sqrt{3} / 2, y=1 / 2$, so the tangent line is

$$
y=\sqrt{3}(x+\sqrt{3} / 2)+1 / 2
$$

Higher derivatives;

Calculate $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ if $x y^{2}=3$.
You can start from either

$$
\begin{aligned}
y^{2}+2 x y y^{\prime}=0 & \text { or } \quad y^{\prime}=-y / 2 x . \\
y^{\prime \prime}=\frac{d}{d x}(-y / 2 x) & =-\frac{y^{\prime} * 2 x-y * 2}{(2 x)^{2}} \\
& =-\frac{y^{\prime} x-y}{2 x^{2}} \\
& =-\frac{(-y / 2 x) x-y}{2 x^{2}}=\frac{3 y}{4 x^{2}}
\end{aligned}
$$

Get your answer back into just x 's and y 's!

