Warmup – quick expansions

To build Pascal's triangle:

- Start with 1's on the end.
- Add two numbers above to get a new entry.

For example, the circled (3) is the sum of the 1 and 2 above.

(A) Fill in the missing numbers. Check: your answers should be symmetric (palindromic).

Pascal's triangle is useful for us because its makes expanding things like $(a + b)^n$ quickly–it gets its coefficients from the n^{th} row (where you start counting from 0). For example:

$$\begin{aligned} (a+b)^0 &= \mathbf{1} \\ (a+b)^1 &= \mathbf{1} * a + \mathbf{1} * b \\ (a+b)^2 &= \mathbf{1} * a^2 + \mathbf{2} * ab + \mathbf{1} * b^2 \\ (a+b)^3 &= \mathbf{1} * a^3 + \mathbf{3} * a^2 b + \mathbf{3} * ab^2 + \mathbf{1} * b^3 \\ (a+b)^4 &= \mathbf{1} * a^4 + \mathbf{4} * a^3 b + \mathbf{6} * a^2 b^2 + \mathbf{4} * ab^3 + \mathbf{1} * b^4 \\ (a+b)^5 &= \end{aligned}$$

(B) Fill in the last expansion. Be organized-start with a^5 , and lower the *a* exponent and raise the *b* exponent each by 1 for each subsequent term. Read the coefficients off the the 5th row you computed above.

Now we can use this to do other kinds of expansions quickly too. For example,

$$(h+2)^{3} = \mathbf{1} * h^{3} + \mathbf{3} * h^{2} * 2 + \mathbf{3} * h * 2^{2} + \mathbf{1} * 2^{3}$$

$$= h^{3} + 6h^{2} + 12h + 8$$

$$(h-3)^{4} = \mathbf{1} * h^{4} + \mathbf{4} * h^{3}(-3) + \mathbf{6} * h^{2}(-3)^{2} + \mathbf{4} * h(-3)^{3} + \mathbf{1} * (-3)^{4}$$

$$= h^{4} - 12h^{3} + 54h^{2} - 108h + 81$$

$$(3h-7)^{2} = \mathbf{1} * (3h)^{2} + \mathbf{2} * (3h) * (-7) + \mathbf{1} * (-7)^{2}$$

$$= 9h^{2} - 42h + 49$$

(C) Now you try:

 $(h-1)^5 =$

 $(h+2)^4 =$

 $(2h-1)^3 =$

Definition

The *derivative* of a function f is a new function defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We will say that a function f is *differentiable* over an interval (a, b) if the derivative function f'(x) exists at every point in (a, b).

(see worksheet for when derivatives *don't* exist)

Q. How is this the same or different from what we were doing last time with tangent lines?

A. Last time, we were calculating derivatives at individual points, and getting *numbers* for answers. Today, we'll calculate the *derivative function*, and get out answers with variables in them (do all the points at once).

Example: let $f(x) = x^2$

Derivatives at a point: If I first ask "what is f'(2)?", I could calculate

$$f'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h} = \lim_{h \to 0} \frac{4h + h^2}{h} = \lim_{h \to 0} 4 + h = 4.$$

But then, if I ask "what is f'(3)?" we have to do it all over again.

Today's goal: Write down a *function* f'(x) which has all the derivatives-at-a-point collected together.

Definition

The *derivative* of a function f is a new function defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We will say that a function f is *differentiable* over an interval (a, b) if the derivative function f'(x) exists at every point in (a, b).

(see worksheet for when derivatives *don't* exist)

Q. How is this the same or different from what we were doing yesterday with tangent lines?

A. Yesterday, we were calculating derivatives at individual points, and getting *numbers* for answers. Today, we'll calculate the *derivative function*, and get out answers with variables in them (do all the points at once).

Example: let $f(x) = x^2$

Derivatives at a point: If I first ask "what is f'(2)?", I could calculate

$$f'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h} = \lim_{h \to 0} \frac{4h + h^2}{h} = \lim_{h \to 0} 4 + h = 4.$$

But then, if I ask "what is f'(3)?" we have to do it all over again.

Today's goal: Write down a *function* f'(x) which has all the derivatives-at-a-point collected together.

If a is a number, (like 2 or 3) then

$$f'(a) = \lim_{\substack{h \to 0 \\ \text{of the } h's}} \frac{f(a+h) - f(a)}{\underset{a \text{ function of}}{h}} = \text{number}$$

But x is a variable, so

$$f'(x) = \lim_{\substack{h \to 0 \\ \text{of the } h's}} \frac{f(x+h) - f(x)}{h} = \text{function of } x's$$

Starting simple

Suppose we consider the piecewise linear function

The derivative is:

$$f'(x) = egin{cases} 1 & x < 1 \ 0 & 1 < x < 3 \ -1 & 3 < x \end{cases}$$

Another example

What is the derivative of f(x) = |x|? Write down the piecewise function and sketch it on the graph.

Lines

In general, if m and b are constants, and

f'(x) = m

the slope of the tangent line = slope of the line

Rough shape of the derivative

Match em up!

A little more notation

Back to what $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ means: Rename $h = \Delta x$ and $f(x+h) - f(x) = \Delta y$ (Δ means "change") As $h \to 0$, Δx and Δy get infinitely small. $\Delta x \rightsquigarrow dx \quad \Delta y \rightsquigarrow dy$ $\frac{\Delta x}{\Delta y} \rightsquigarrow \frac{dy}{dx}$ "infinitesimals" So $m = \frac{f(x+h) - f(x)}{h} = \frac{\Delta y}{\Delta x}$.

Leibniz notation

One way to write the derivative of f(x) versus x is f'(x). Another way to write it is

$$f'(x) = \frac{df}{dx} = \frac{d}{dx}f(x).$$

Derivatives at a point: f'(a) means the derivative of f(x) *evaluated at a.* Another way to write it is

$$f'(a) = \left. \frac{df}{dx} \right|_{x=a} = \left. \frac{d}{dx} f(x) \right|_{x=a}$$

Example: We can write the derivative of x^2 as $\frac{d}{dx}x^2$ and the derivative of x^2 at x = 5 as $\frac{d}{dx}x^2\Big|_{x=5}$

Go to work: building our first derivative rule.

Example 1: What *is* the derivative of x^2 ?

$$\frac{d}{dx}x^{2} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{2} - (x)^{2}}{h}$$
$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$
$$= \lim_{h \to 0} 2x + h = \boxed{2x} \qquad (\text{so } \frac{d}{dx}x^{2}\Big|_{x=5} = 2 * 5)$$

By taking limits, fill in the rest of the table:

Hints: For $\frac{1}{x^2}$, find a common denominator, and then expand. For $\sqrt[3]{x}$, try multiplying and dividing by $(\sqrt[3]{x+h})^2 + (\sqrt[3]{x+h})(\sqrt[3]{x}) + (\sqrt[3]{x})^2$.

f(x)	f'(x)
$x^{0} = 1$	0
$x^1 = x$	1
<i>x</i> ²	2 <i>x</i>
<i>x</i> ³	3 <i>x</i> ²
$\frac{1}{x} = x^{-1}$	$-x^{-2}$
$\frac{1}{x^2} = x^{-2}$	$-2x^{-3}$
$\sqrt{x} = x^{1/2}$	$(1/2)x^{-1/2}$
$\sqrt[3]{x} = x^{1/3}$	$(1/3)x^{-2/3}$
	1

Use the power rule to take consecutive derivatives of $x^{5/2}$:

$$x^{5/2} \xrightarrow{\frac{d}{dx}} \underbrace{\frac{5}{2}x^{3/2}}_{2} 1^{st} \text{ derivative} = f'(x) = \frac{d}{dx}x^{2}$$

$$\xrightarrow{\frac{d}{dx}} \underbrace{2^{nd} \text{ derivative}}_{2^{nd} \text{ derivative}} = f''(x) = \frac{d^{2}}{dx^{2}}x^{2}$$

$$\xrightarrow{\frac{d}{dx}} \underbrace{3^{rd} \text{ derivative}}_{4^{th} \text{ derivative}} = f^{(3)}(x) = \frac{d^{3}}{dx^{3}}x^{2}$$

$$\xrightarrow{\frac{d}{dx}}_{4^{th} \text{ derivative}} = f^{(4)}(x) = \frac{d^{4}}{dx^{4}}x^{2}$$

Definition: The n^{th} derivative of f(x) is

$$\underbrace{\frac{d}{dx}\frac{d}{dx}\dots\frac{d}{dx}}_{n}f(x) = \frac{d^{n}}{dx^{n}}f(x) = f^{(n)}(x).$$