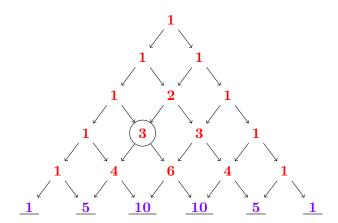
Warmup – quick expansions

Pascal's triangle:



To build Pascal's triangle:

- Start with 1's on the end.
- Add two numbers above to get a new entry.

For example, the circled 3 is the sum of the 1 and 2 above.

(A) Fill in the missing numbers.

Check: your answers should be symmetric (palindromic).

Pascal's triangle is useful for us because its makes expanding things like $(a + b)^n$ quickly—it gets its coefficients from the n^{th} row (where you start counting from 0). For example:

$$(a+b)^{0} = \mathbf{1}$$

$$(a+b)^{1} = \mathbf{1} * a + \mathbf{1} * b$$

$$(a+b)^{2} = \mathbf{1} * a^{2} + \mathbf{2} * ab + \mathbf{1} * b^{2}$$

$$(a+b)^{3} = \mathbf{1} * a^{3} + \mathbf{3} * a^{2}b + \mathbf{3} * ab^{2} + \mathbf{1} * b^{3}$$

$$(a+b)^{4} = \mathbf{1} * a^{4} + \mathbf{4} * a^{3}b + \mathbf{6} * a^{2}b^{2} + \mathbf{4} * ab^{3} + \mathbf{1} * b^{4}$$

$$(a+b)^{5} = \mathbf{1} * a^{5} + \mathbf{5} * a^{4}b + \mathbf{10} * a^{3}b^{2} + \mathbf{10} * a^{2}b^{3} + \mathbf{5} * ab^{4} + \mathbf{1} * b^{5}$$

(B) Fill in the last expansion. Be organized-start with a^5 , and lower the a exponent and raise the b exponent each by 1 for each subsequent term. Read the coefficients off the the 5th row you computed above.

Now we can use this to do other kinds of expansions quickly too. For example,

$$(h+2)^3 = \mathbf{1} * h^3 + \mathbf{3} * h^2 * 2 + \mathbf{3} * h * 2^2 + \mathbf{1} * 2^3$$

$$= h^3 + 6h^2 + 12h + 8$$

$$(h-3)^4 = \mathbf{1} * h^4 + \mathbf{4} * h^3(-3) + \mathbf{6} * h^2(-3)^2 + \mathbf{4} * h(-3)^3 + \mathbf{1} * (-3)^4$$

$$= h^4 - 12h^3 + 54h^2 - 108h + 81$$

$$(3h-7)^2 = \mathbf{1} * (3h)^2 + \mathbf{2} * (3h) * (-7) + \mathbf{1} * (-7)^2$$

$$= 9h^2 - 42h + 49$$

(C) Now you try:

$$(h-1)^5 = h^5 - 5h^4 + 10h^3 - 10h^2 + 5h - 1$$

$$(h+2)^4 = h^4 + 4 * 2 * h^3 + 6 * 2^2 * h^2 + 4 * 2^3 * h + 2^4 = h^4 + 8h^3 + 24h^2 + 32h + 16$$

$$(2h-1)^3 = (2h)^3 + 3*(2h)^2*(-1) + 3*(2h)*(-1)^2 + (-1)^3 = 8h^3 - 12h^2 + 6h - 1$$

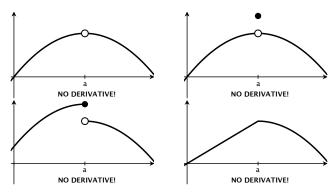
Derivatives

Definition

The derivative of a function f is a new function defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We will say that a function f is differentiable over an interval (a, b) if the derivative function f'(x) exists at every point in (a, b). Remember from the worksheet:



Definition

The derivative of a function f is a new function defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We will say that a function f is differentiable over an interval (a, b) if the derivative function f'(x) exists at every point in (a, b).

(see worksheet for when derivatives don't exist)

Q. How is this the same or different from what we were doing last time with tangent lines?

A. Last time, we were calculating derivatives at individual points, and getting *numbers* for answers. Today, we'll calculate the *derivative function*, and get out answers with variables in them (do all the points at once).

Example: let $f(x) = x^2$

Derivatives at a point: If I first ask "what is f'(2)?", I could calculate

$$f'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h} = \lim_{h \to 0} \frac{4h + h^2}{h} = \lim_{h \to 0} 4 + h = \boxed{4}.$$

But then, if I ask "what is f'(3)?" we have to do it all over again.

Today's goal: Write down a *function* f'(x) which has all the derivatives-at-a-point collected together.

If a is a number, (like 2 or 3) then

$$f'(a) = \lim_{\substack{h \to 0 \\ \text{gets rid} \\ \text{of the } h's}} \frac{f(a+h) - f(a)}{h} = \text{number}$$

But x is a variable, so

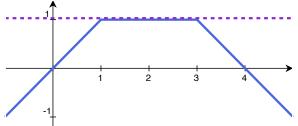
$$f'(x) = \lim_{\substack{h \to 0 \\ \text{gets rid} \\ \text{of the } h's}} \frac{f(x+h) - f(x)}{h} = \text{function of } x'$$

Suppose we consider the piecewise linear function

$$f(x) = \begin{cases} x & x \le 1 \\ 1 & 1 < x < 3 \\ -x + 4 & 3 \le x \end{cases}$$

Suppose we consider the piecewise linear function

$$f(x) = \begin{cases} x & x \le 1 \\ 1 & 1 < x < 3 \\ -x + 4 & 3 \le x \end{cases}$$



Suppose we consider the piecewise linear function

$$f(x) = \begin{cases} x & x \le 1 \\ 1 & 1 < x < 3 \\ -x + 4 & 3 \le x \end{cases}$$

Suppose we consider the piecewise linear function

$$f(x) = \begin{cases} x & x \le 1 \\ 1 & 1 < x < 3 \\ -x + 4 & 3 \le x \end{cases}$$

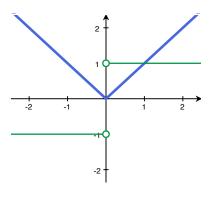
The derivative is:

$$f'(x) = \begin{cases} 1 & x < 1 \\ 0 & 1 < x < 3 \\ -1 & 3 < x \end{cases}$$

Another example

What is the derivative of f(x) = |x|?

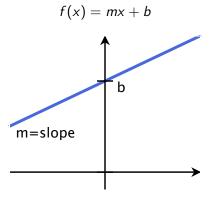
Write down the piecewise function and sketch it on the graph.



$$f'(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$$

Lines

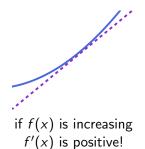
In general, if m and b are constants, and

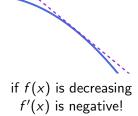


$$f'(x) = m$$

the slope of the tangent line = slope of the line

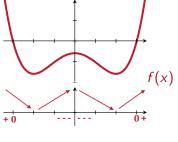
Rough shape of the derivative

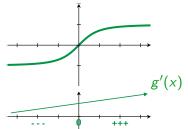


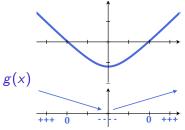


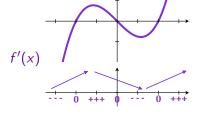
Match em up!

Here are graphs of two functions and their derivatives. Which are which?









Back to what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ means:

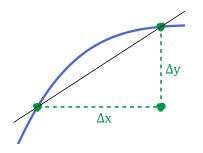
Rename

$$h = \Delta x$$

and

$$f(x+h)-f(x)=\Delta y$$

 $(\Delta \text{ means "change"})$



So
$$m = \frac{f(x+h)-f(x)}{h} = \frac{\Delta y}{\Delta x}$$
.

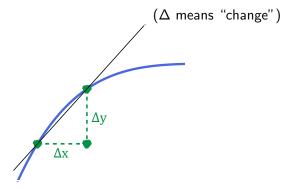
Back to what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ means:

Rename

$$h = \Delta x$$

and

$$f(x+h)-f(x)=\Delta y$$



So
$$m = \frac{f(x+h)-f(x)}{h} = \frac{\Delta y}{\Delta x}$$
.

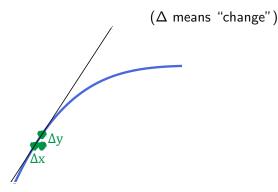
Back to what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ means:

Rename

$$h = \Delta x$$

and

$$f(x+h)-f(x)=\Delta y$$



So
$$m = \frac{f(x+h)-f(x)}{h} = \frac{\Delta y}{\Delta x}$$
.

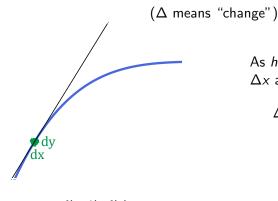
Back to what $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ means:

Rename

$$h = \Delta x$$

and

$$f(x+h)-f(x)=\Delta y$$



As
$$h o 0$$
,

 Δx and Δy get infinitely small.

$$\Delta x \rightsquigarrow dx$$
 $\Delta y \rightsquigarrow dy$

$$\frac{y}{x} \sim \frac{dy}{dx}$$

"infinitesimals"

So
$$m = \frac{f(x+h)-f(x)}{h} = \frac{\Delta y}{\Delta x}$$
.

Leibniz notation

One way to write the derivative of f(x) versus x is f'(x). Another way to write it is

$$f'(x) = \frac{df}{dx} = \frac{d}{dx}f(x).$$

Derivatives at a point: f'(a) means the derivative of f(x) evaluated at a. Another way to write it is

$$f'(a) = \frac{df}{dx}\bigg|_{x=a} = \frac{d}{dx}f(x)\bigg|_{x=a}$$

Example: We can write the derivative of x^2 as $\frac{d}{dx}x^2$ and the derivative of x^2 at x = 5 as $\frac{d}{dx}x^2\Big|_{x=5}$

Go to work: building our first derivative rule.

Example 1: What *is* the derivative of x^2 ?

$$\frac{d}{dx}x^{2} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{2} - (x)^{2}}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} 2x + h = 2x$$
(so $\frac{d}{dx}x^{2}\Big|_{x=5} = 2 * 5$)

By taking limits, fill in the rest of the table:

f(x)	1	X	x^2	x ³	$\frac{1}{x}$	$\frac{1}{x^2}$	\sqrt{X}	$\sqrt[3]{X}$
f'(x)			2 <i>x</i>					

Hints: For $\frac{1}{\sqrt{2}}$, find a common denominator, and then expand.

For $\sqrt[3]{x}$, try multiplying and dividing by $(\sqrt[3]{x+h})^2 + (\sqrt[3]{x+h})(\sqrt[3]{x}) + (\sqrt[3]{x})^2$.

Go to work: building our first derivative rule.

Example 1: What *is* the derivative of x^2 ?

$$\frac{d}{dx}x^{2} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{2} - (x)^{2}}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{2xh + h^{2}}{h}$$

$$= \lim_{h \to 0} 2x + h = 2x$$
(so $\frac{d}{dx}x^{2}\Big|_{x=5} = 2*5$)

By taking limits, fill in the rest of the table:

Hints: For $\frac{1}{\sqrt{2}}$, find a common denominator, and then expand.

For $\sqrt[3]{x}$, try multiplying and dividing by $(\sqrt[3]{x+h})^2 + (\sqrt[3]{x+h})(\sqrt[3]{x}) + (\sqrt[3]{x})^2$.

$$\lim_{h\to 0} \frac{(x+h)-x}{h} = \lim_{h\to 0} \frac{h}{h} = \boxed{1}$$

$$f(x) = X_s$$

$$=\lim_{h\to 0} x^2 + 2xh + h^2 - x^2$$

$$= \lim_{h\to 0} \frac{2xh + h^2}{h} = \lim_{h\to 0} 2x + h$$

recall:
$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

so $(x+h)^3 - x^3 = 3x^2h + 3xh^2 + h^3$
so, if $h \neq 0$

$$\frac{(x+h)^3 - x^3}{h} = 3x^2 + 3xh + h^2$$

So
$$\lim_{h\to 0} \frac{(x+h)^3-x^3}{h\to 0} = \lim_{h\to 0} (3x^2+3xh+h^3)$$

= $3x^2+0+0$

$$L(x) = \frac{x}{1} = x_{-1}$$

$$\lim_{h\to 0} \left(\frac{1}{x+h} - \frac{1}{x} \right) = \lim_{h\to 0} \left(\frac{1}{h} \right) \left(\frac{x - (x+h)}{(x+h)(x)} \right)$$

$$\lim_{h\to 0} \left(\frac{1}{h}\right) \left(\frac{-h}{(x+h)x}\right)$$

$$=\lim_{N\to0}-\frac{1}{(x+h)x}=-\frac{1}{x^2}=-\frac{2}{x^2}$$

$$\lim_{h\to 0} \left(\frac{1}{(x+h)^2 - \frac{1}{x^2}} \right) = \lim_{h\to 0} \left(\frac{1}{h} \right) \left(\frac{x^2 - (x+h)^2}{(x+h)^2 \times 2} \right)$$

=
$$\lim_{h\to 0} \frac{1}{h} \left(\frac{\chi^2 - (\chi^2 + 2\chi h + h^2)}{(\chi + h)^2 \times 2} \right)$$

=
$$\lim_{h\to 0} \frac{1}{h} \left(\frac{-2xh + h^2}{(x+h)^2 x^2} \right) = \lim_{h\to 0} \frac{-2x+h}{(x+h)^2 x^2}$$

$$= -\frac{2x}{x^4} = -\frac{2}{x^3} = -2x^{-3}$$

From last class:

$$f(x) = \sqrt{x}$$

So
$$f(x+h) - f(x) = \sqrt{x+h} - \sqrt{x}$$

$$= \sqrt{x + h} - \sqrt{x}$$

$$\sqrt{x + h} + \sqrt{x}$$

$$= \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{h(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$$

So
$$\lim_{h\to 0} \sqrt{x+h} - \sqrt{x} = \lim_{h\to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h\to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}}$$

$$(a-b)(a^{2}+ab+b^{2})$$

$$= a^{3}+a^{2}b+ab^{2}$$

$$-(a^{2}b+ab^{2}+b^{3})$$

$$= a^{3}-b^{3}, \quad \text{let} \quad a=\sqrt[3]{x+h}$$

$$b=\sqrt[3]{x}$$

$$((x+h)^{1/3}-x^{1/3})((x+h)^{2/3}+(x+h)^{1/3}x^{1/5}+x^{2/3})$$

$$=(x+h)^{3/3}-x^{3/3}=x+h-x=h$$

$$\lim_{h\to 0} \frac{(x+h)^{1/3} - x^{1/3}}{(x+h)^{2/3} + (x+h)^{1/3} + x^{2/3}}$$

$$= \frac{(x+h)^{2/3} + (x+h)^{1/3} + x^{2/3}}{(x+h)^{2/3} + (x+h)^{1/3} + x^{2/3}}$$

$$= \frac{1}{x^{2/3} + x^{1/3} x^{1/3} + x^{2/3}} = \frac{1}{3 x^{2/3}} = \frac{1}{3 x^{2/3}} = \frac{1}{3 x^{2/3}}$$

Power rule:
$$\frac{d}{dx^{a}} = ax^{a-1}$$

Use the power rule to take consecutive derivatives of $x^{5/2}$:

$$x^{5/2} \xrightarrow{\frac{d}{dx}} \frac{5}{2}x^{3/2} \quad I^{st} \text{ derivative} = f'(x) = \frac{d}{dx}x^2$$

$$\xrightarrow{\frac{d}{dx}} \frac{5}{2} * \frac{3}{2}x^{1/2} \quad 2^{nd} \text{ derivative} = f''(x) = \frac{d^2}{dx^2}x^2$$

$$\xrightarrow{\frac{d}{dx}} \frac{5}{2} * \frac{3}{2} * \frac{1}{2}x^{-1/2} \quad 3^{rd} \text{ derivative} = f^{(3)}(x) = \frac{d^3}{dx^3}x^2$$

$$\xrightarrow{\frac{d}{dx}} \frac{5}{2} * \frac{3}{2} * \frac{1}{2} * \left(-\frac{1}{2}\right)x^{-3/2}$$

$$4^{th} \text{ derivative} = f^{(4)}(x) = \frac{d^4}{dx^4}x^2$$

Definition: The n^{th} derivative of f(x) is

$$\underbrace{\frac{d}{dx}\frac{d}{dx}\dots\frac{d}{dx}}_{f(x)}f(x)=\frac{d^n}{dx^n}f(x)=f^{(n)}(x).$$