Exponential and Logarithm Functions

If n and m are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$2^5 = 2 * 2 * 2 * 2 * 2$$

If n and m are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$2^5 = 2 * 2 * 2 * 2 * 2$$

 $2^5 * 2^3 = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^8$

If n and m are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n * a^m = a^{n+m}$$

$$2^5 = 2 * 2 * 2 * 2 * 2$$

 $2^5 * 2^3 = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^8$

If n and m are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n * a^m = a^{n+m}$$

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

If n and m are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n * a^m = a^{n+m} \qquad (a^n)^m = a^{n*m}$$

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n*a^m=a^{n+m}$$
 $(a^n)^m=a^{n*m}$ (Notice: a^{m^n} means $a^{(m^n)}$, since $(a^m)^n$ can be written another way)

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n*a^m=a^{n+m}$$
 $(a^n)^m=a^{n*m}$ (Notice: a^{m^n} means $a^{(m^n)}$, since $(a^m)^n$ can be written another way)

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

$$2^{3} * 5^{3} = (2 * 2 * 2) * (5 * 5 * 5) = (2 * 5) * (2 * 5) * (2 * 5) = (2 * 5)^{3}$$

If *n* and *m* are positive integers...

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}$$
 (WeBWoRK: a^n or $a * *n$)

Some identities:

$$a^n*a^m=a^{n+m}$$
 $(a^n)^m=a^{n*m}$ (Notice: a^{m^n} means $a^{(m^n)}$, since $(a^m)^n$ can be written another way)

$$a^n * b^n = (a * b)^n$$

$$2^{5} = 2 * 2 * 2 * 2 * 2 * 2$$

$$2^{5} * 2^{3} = (2 * 2 * 2 * 2 * 2) * (2 * 2 * 2) = 2^{8}$$

$$(2^{3})^{5} = (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 2^{15}$$

$$2^{3^{5}} = 2^{243} >> (2^{3})^{5} = 2^{15}$$

$$2^{3} * 5^{3} = (2 * 2 * 2) * (5 * 5 * 5) = (2 * 5) * (2 * 5) * (2 * 5) = (2 * 5)^{3}$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ?

$$a^n = a^{n+0} = a^n * a^0$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is a^0 ?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

2. What is a^x if x is negative?

$$a^n * a^{-n} = a^{n-n} = a^0 = 1$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is
$$a^0$$
?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

2. What is
$$a^x$$
 if x is negative?

$$a^{n} * a^{-n} = a^{n-n} = a^{0} = 1,$$
 so $a^{-n} = 1/(a^{n})$

o
$$a^{-n} = 1/(a^n)$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is
$$a^0$$
?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

2. What is
$$a^x$$
 if x is negative?

$$a^{n} * a^{-n} = a^{n-n} = a^{0} = 1,$$
 so $a^{-n} = 1/(a^{n})$

3. What is
$$a^x$$
 if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a$$

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is
$$a^0$$
?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

so
$$a^0 = 1$$

2. What is a^x if x is negative?

$$a^{n} * a^{-n} = a^{n-n} = a^{0} = 1,$$
 so $a^{-n} = 1/(a^{n})$

so
$$a^{-n} = 1/(a^n)$$
.

3. What is a^x if x is a fraction?

$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a,$$
 so $a^{1/n} = \sqrt[n]{a}$

so
$$a^{1/n} = \sqrt[n]{a}$$

and
$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$
.

Take for granted: If n and m are positive integers,

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n}, \qquad a^n * a^m = a^{n+m}, \qquad (a^n)^m = a^{n*m}.$$

Notice:

1. What is
$$a^0$$
?

$$a^n = a^{n+0} = a^n * a^0,$$
 so $a^0 = 1$.

so
$$a^0 = 1$$

2. What is
$$a^x$$
 if x is negative?

$$a^n * a^{-n} = a^{n-n} = a^0 = 1,$$
 so $|a^{-n} = 1/(a^n)|$

so
$$a^{-n} = 1/(a^n)$$

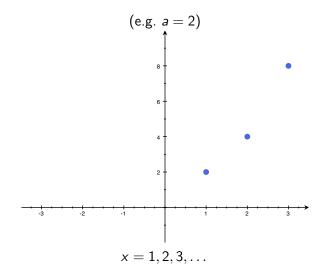
3. What is a^x if x is a fraction?

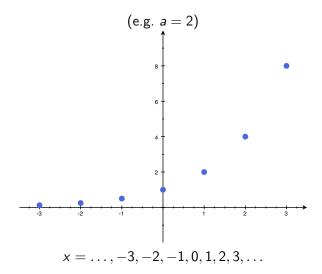
$$(a^n)^{1/n} = a^{n*\frac{1}{n}} = a^1 = a,$$
 so $a^{1/n} = \sqrt[n]{a}$

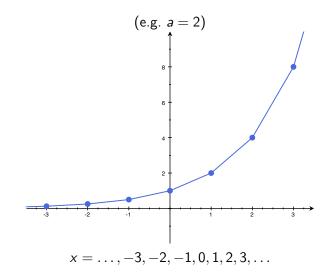
so
$$a^{1/n} = \sqrt[n]{a}$$

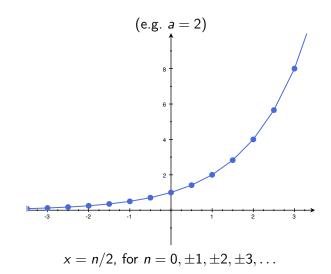
and
$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$
.

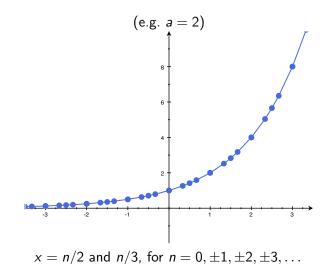
Example:
$$8^{5/3} = (\sqrt[3]{8})^5 = 2^5 = 32$$
 or $8^{5/3} = \sqrt[3]{8^5} = \sqrt[3]{32,768} = 32$

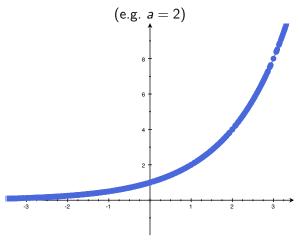






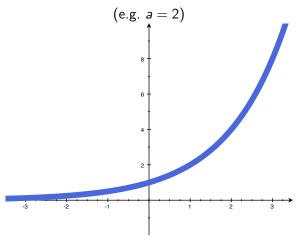




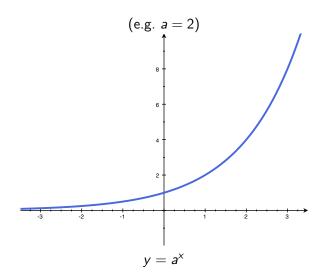


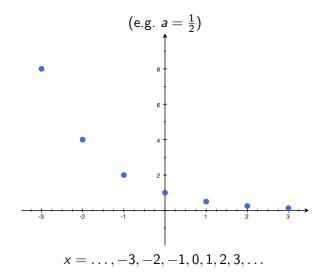
$$x = n/2$$
, $n/3$, ..., $n/15$, for $n = 0, \pm 1, \pm 2, \pm 3, ...$

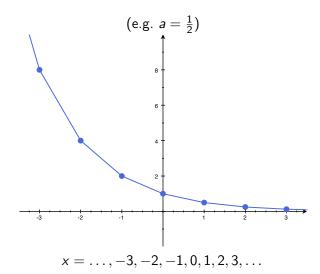
If a > 1:

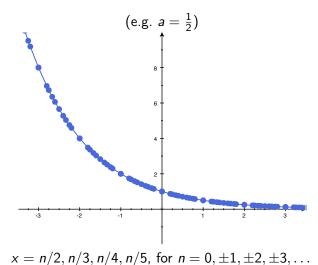


x = n/2, n/3, ..., n/100, for $n = 0, \pm 1, \pm 2, \pm 3, ...$

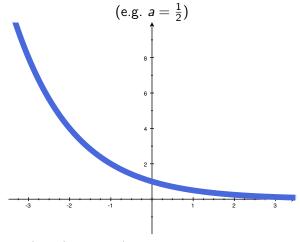




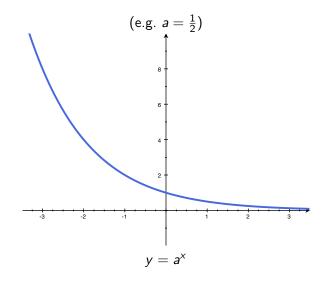




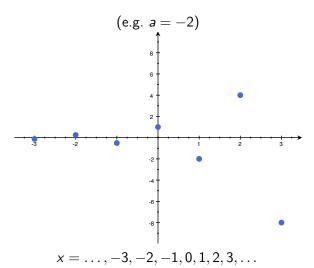
If 0 < a < 1:



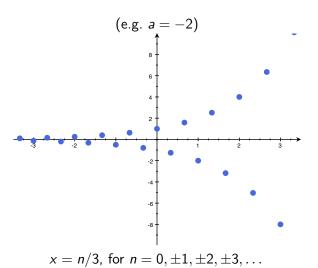
 $x = n/2, n/3, ..., n/100, \text{ for } n = 0, \pm 1, \pm 2, \pm 3, ...$



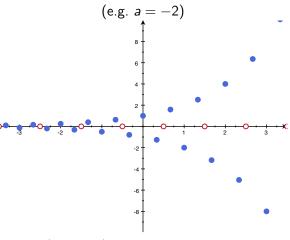
If 0 > a:



If 0 > a:

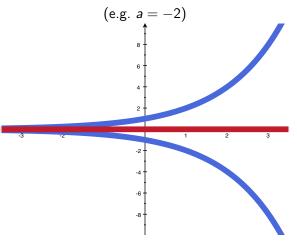


If 0 > a:



x = n/3 and n/2, for $n = 0, \pm 1, \pm 2, \pm 3, ...$

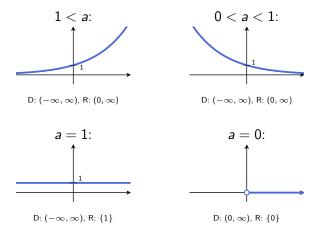
If 0 > a:



$$x = n/2, n/3, ..., n/100, \text{ for } n = 0, \pm 1, \pm 2, \pm 3, ...$$

OH NO!

The function a^x :

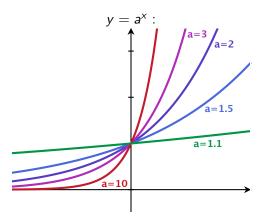


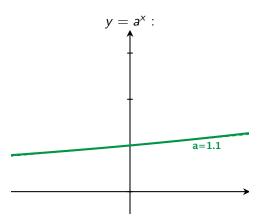
Properties:

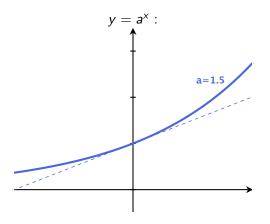
$$a^{b}*a^{c} = a^{b+c}$$
 $(a^{b})^{c} = a^{b*c}$ $a^{-x} = 1/a^{x}$ $a^{c}*b^{c} = (ab)^{c}$

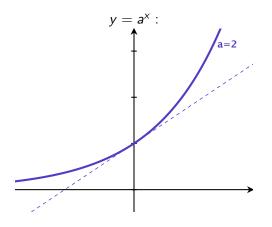
Our favorite exponential function:

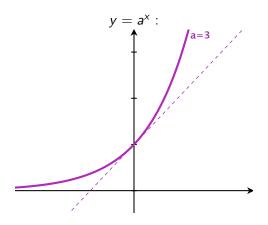
Look at how the function is increasing through the point (0,1):

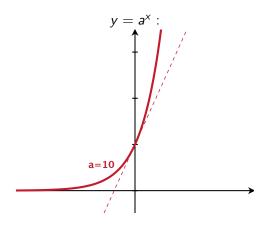




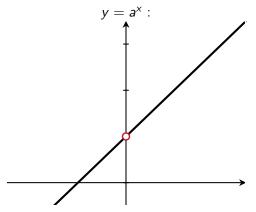




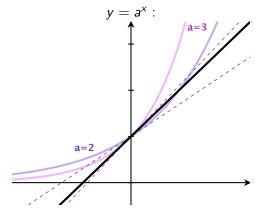




Look at how the function is increasing through the point (0,1):

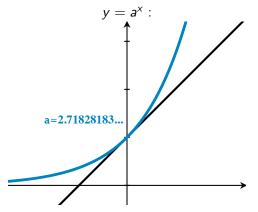


Q: Is there an exponential function whose slope at (0,1) is 1?



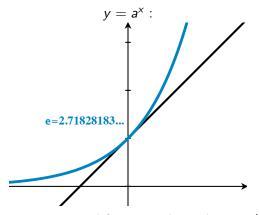
Q: Is there an exponential function whose slope at (0,1) is 1?

Look at how the function is increasing through the point (0,1):



Q: Is there an exponential function whose slope at (0,1) is 1?

Look at how the function is increasing through the point (0,1):



Q: Is there an exponential function whose slope at (0,1) is 1? **A:** e^x is the exponential function whose slope at (0,1) is 1. (e=2.71828183... is to calculus as $\pi=3.14159265...$ is to geometry)

The exponential function a^x has inverse $\log_a(x)$

The exponential function a^x has inverse $\log_a(x)$, i.e.

$$\log_a(a^x) = x = a^{\log_a(x)}$$

The exponential function a^x has inverse $\log_a(x)$, i.e.

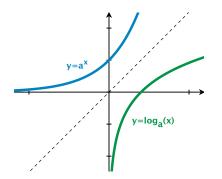
$$\log_a(a^x) = x = a^{\log_a(x)}$$
, i.e.

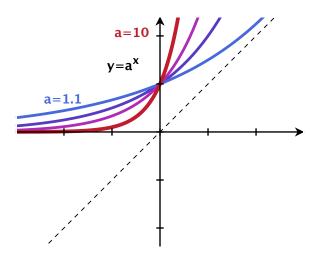
$$y = a^x$$
 if and only if $\log_a(y) = x$.

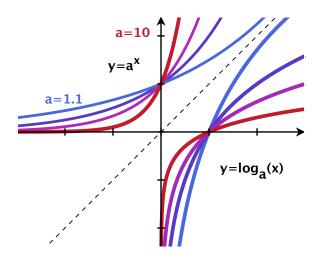
The exponential function a^x has inverse $\log_a(x)$, i.e.

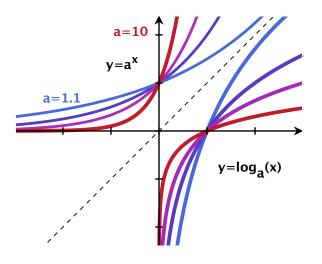
$$\log_a(a^x) = x = a^{\log_a(x)}$$
, i.e.

$$y = a^x$$
 if and only if $\log_a(y) = x$.

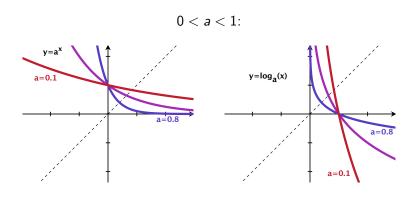








Domain: $(0,\infty)$ i.e. all x>0 Range: $(-\infty,\infty)$ i.e. all x



Domain: $(0, \infty)$ i.e. all x > 0

Range: $(-\infty, \infty)$ i.e. all x

Since... we know...

Since...

we know...

1. $a^0 = 1$

1. $\log_a(1) = 0$

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

Since...

- 1. $a^0 = 1$
- 2. $a^1 = a$
- 3. $a^b * a^c = a^{b+c}$

- 1. $\log_a(1) = 0$
- 2. $\log_a(a) = 1$
- 3. $\log_a(b*c) = \log_a(b) + \log_a(c)$

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

3. $a^b * a^c = a^{b+c}$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

3.
$$a^b * a^c = a^{b+c}$$

1.
$$\log_a(1) = 0$$

2.
$$\log_{a}(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)}$$

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

3.
$$a^b * a^c = a^{b+c}$$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)}$$

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

3.
$$a^b * a^c = a^{b+c}$$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)} = b * c$$
.

Since...

1.
$$a^0 = 1$$

2.
$$a^1 = a$$

3.
$$a^b * a^c = a^{b+c}$$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)} = b * c$$
.

So
$$y = \log_a(b * c)$$
 as well!

Since...

1.
$$a^0 = 1$$

2. $a^1 = a$

3.
$$a^b * a^c = a^{b+c}$$

4.
$$(a^b)^c = a^{b*c}$$

1.
$$\log_a(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

$$4. \log_a(b^c) = c \log_a(b)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)} = b * c$$
.

So
$$y = \log_a(b * c)$$
 as well!

Since...

1
$$a^0 = 1$$

2.
$$a^1 = a$$

3. $a^b * a^c = a^{b+c}$

4.
$$(a^b)^c = a^{b*c}$$

1.
$$\log_{2}(1) = 0$$

2.
$$\log_a(a) = 1$$

3.
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$

$$4. \log_a(b^c) = c \log_a(b)$$

Example: why
$$\log_a(b*c) = \log_a(b) + \log_a(c)$$
:
Suppose $y = \log_a(b) + \log_a(c)$.

Then
$$a^y = a^{\log_a(b) + \log_a(c)} = a^{\log_a(b)} a^{\log_a(c)} = b * c$$
.

So
$$y = \log_a(b * c)$$
 as well!

Lastly:
$$\frac{\log_a(b)}{\log_a(c)} = \log_c(b)$$

4. Let
$$y = c \log_a(b)$$
.

Then $a^{ij} = a^{c \log_a(b)}$

$$= (a^{l \log_a(b)})^c$$

$$= b^c$$

$$= (a^{l \log_a(b)})^c$$

$$= b^c$$

$$= c \cdot (\log_a(b))$$

So $y = l \log_a(b^c)$.

Then $a^{ij} = a^{l \log_a(b)}$.

Change of base:

$$b = (c)^{l \log_a(b)}$$

Then $a^{ij} = a^{l \log_a(b)} \cdot (\log_a(b))$

$$= (a^{l \log_a(b)})^{l \log_a(b)}$$

$$= (a^{l \log_a(b)})^{l \log_a(b)} = \log_a(b) \cdot \log_a(b)$$

Thus $\log_a(b) = \log_a(b) \cdot \log_a(b)$

$$= (a^{l \log_a(b)})^{l \log_a(b)} = \log_a(b) \cdot \log_a(b)$$

So $\log_a(b)^{l \log_a(b)} = \log_a(b) \cdot \log_a(b)$

let
$$y = \log_a(b^c)$$
.

Then $a^{v_0} = b^c$

$$= \left((\log_a(b))^c \right)^c$$

$$= c \cdot (\log_a(b))$$

$$= c \cdot (\log_a(b))$$

$$\Rightarrow = \left(c \cdot (\log_a(b)) \cdot n \right)$$

$$\Rightarrow = \left(c \cdot (\log_a(b)) \cdot n \right)$$

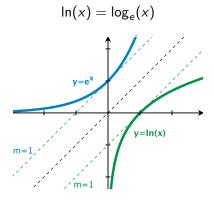
$$\Rightarrow = \left(c \cdot (\log_a(b)) \cdot n \right)$$

so y= loga(b)

Favorite logarithmic function

Remember: $y = e^x$ is the function whose slope through the point (0,1) is 1.

The *inverse* to $y = e^x$ is the *natural log*:



Favorite logarithmic function

Remember: $y = e^x$ is the function whose slope through the point (0,1) is 1.

The *inverse* to $y = e^x$ is the *natural log*:

$$\ln(x) = \log_{e}(x)$$

$$y = e^{x}$$

$$y = \ln(x)$$

$$y = \ln(x)$$

We will often use the facts that $e^{\ln(x)} = x$ (for x > 0) and $\ln(e^x) = x$ (for all x)

Two super useful facts:

Explain why:

(1)
$$\log_a(b) = \ln(b) / \ln(a)$$

(2)
$$a^b = e^{b \ln(a)}$$
 [hint: start by rewriting $b \ln(a)$, and use the fact that $e^{\ln(x)} = x$]

Two super useful facts:

Explain why:

$$(1) \log_a(b) = \ln(b) / \ln(a)$$

Since
$$ln(b) = log_e(b)$$
 and $ln(a) = log_e(a)$, we have

$$\frac{\ln(b)}{\ln(a)} = \frac{\log_e(b)}{\log_e(a)} = \log_a(b)$$

(2)
$$a^b = e^{b \ln(a)}$$
 [hint: start by rewriting $b \ln(a)$, and use the fact that $e^{\ln(x)} = x$]

Since
$$b \ln(a) = \ln(a^b)$$
 and $e^{\ln(x)} = x$, we have

$$e^{b\ln(a)} = e^{\ln(a^b)} = a^b$$

Examples:

(1) Condense the logarithmic expressions

$$\frac{1}{2}\ln(x) + 3\ln(x+1) \qquad 2\ln(x+5) - \ln(x) \qquad \frac{1}{3}(\log_3(x) - \log_3(x+1))$$

(2) Solve the following expressions for x:

$$2(e^{3x-5}) - 5 = 11$$
 $\ln(3x+1) - \ln(5) = \ln(2x)$

Examples:

(1) Condense the logarithmic expressions

$$\frac{1}{2}\ln(x) + 3\ln(x+1) \qquad 2\ln(x+5) - \ln(x) \qquad \frac{1}{3}(\log_3(x) - \log_3(x+1))$$

(2) Solve the following expressions for x:

$$2(e^{3x-5}) - 5 = 11$$
 $\ln(3x+1) - \ln(5) = \ln(2x)$

$$x = \frac{\ln(8) + 5}{3}$$

$$x = \frac{1}{7}$$

$$= \ln \left(x^{1/2} \left(x + 1 \right)^{3} \right)$$

$$= \ln \left(\left(x + 5 \right)^{2} \right) + \ln \left(x^{-1} \right)$$

$$= \ln \left(\left(x + 5 \right)^{2} \cdot x^{-1} \right) = \ln \left(\frac{\left(x + 5 \right)^{2}}{x} \right)$$

$$= \ln \left(\left(x + 5 \right)^{2} \cdot x^{-1} \right) = \ln \left(\frac{\left(x + 5 \right)^{2}}{x} \right)$$

$$= \frac{1}{3} \left(\log_{3} (x) - \log_{3} (x + 1) \right) = \frac{1}{3} \left(\log_{3} \left(x + 1 \right)^{-1} \right)$$

 $= \log_3 \left(\frac{3}{\sqrt{\frac{x}{x+1}}} \right)$

 $\frac{1}{2}\ln(x) + 3\ln(x+1) = \ln(x'^2) + \ln((x+1)^3)$

& X = 3

If
$$2(e^{3x-5})-5=11$$
,
then $e^{3x-5}=\frac{11+5}{a}=8$
80 $3x-5=\ln(8)$
So $x=\frac{\ln(8)+5}{3}$

$$\frac{3\times+1}{5} = 2\times$$

$$3\times+1 = 10\times$$

$$1 = 7\times$$

$$|x = \frac{1}{7}$$

$$\left(\ln(3x+1) - \ln(5) = \ln(3x+1) + \ln(5^{-1})\right)$$

$$= \ln((3x+1)5^{-1}) = \ln(\frac{3x+1}{5})$$

$$\ln(a) - \ln(b) = \ln(a) + \ln(5^{-1}) = \ln(\frac{a}{5})$$