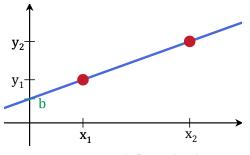
Functions and their graphs

Simplest functions: Lines!



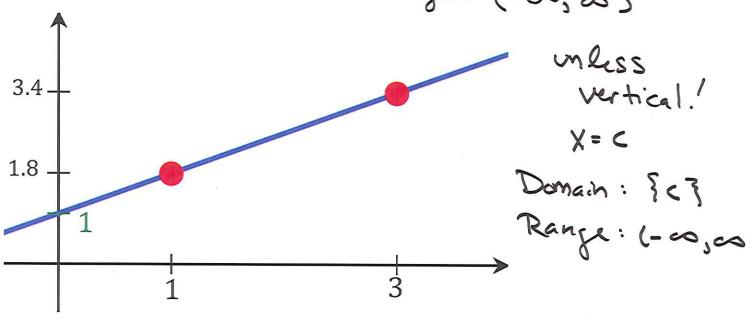
Two points define a line!

Slope:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 (rise/run)

Point-slope form: $y - y_1 = m(x - x_1)$ (good for writing down lines)

Slope-intercept form: $y = mx + b$ (good for graphing)

General form: $Ax + By + C = 0$ (accounts for ∞ slope)



Example:

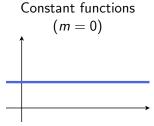
Slope:
$$m = \frac{3.4 - 1.8}{3 - 1} = 0.8$$
 (rise/run)

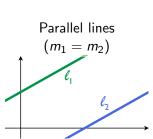
Point-slope form: y - 1.8 = 0.8 * (x - 1) (good for writing down lines)

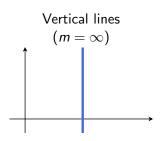
Slope-intercept form: y = 0.8 * x + 1 (good for graphing)

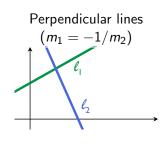
General form: -0.8 * x + y - 1 = 0 (accounts for ∞ slope)

Lines: Special cases









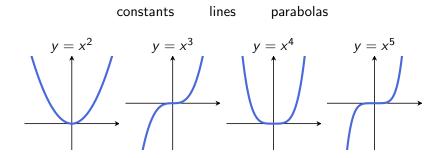
Other good functions to know: polynomials.

$$y = a_0 + a_1 x + \dots + a_n x^n$$

(n is the degree)

n = 2:

n = 0: n = 1:

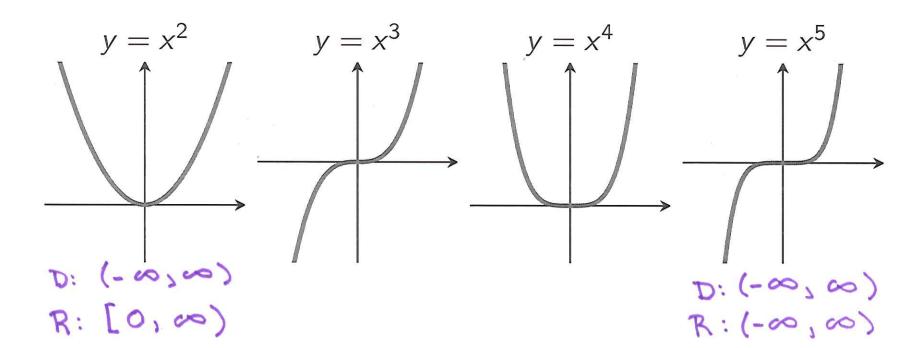


Other good functions to know: polynomials.

$$y = a_0 + a_1 x + \dots + a_n x^n$$

(n is the degree) $a_n \neq 0$.

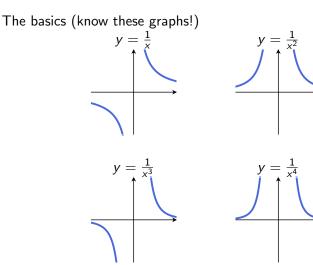
$$n=0$$
: $n=1$: $n=2$: constants lines parabolas



Other good functions to know: rationals.

$$y = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

 $b_0 + b_1 x + \cdots + b_m x^r$



Domain: all xis that go in Range: all yis that come out.

y=2x+3 D: all reals, $-\infty < x < \infty$ ($-\infty$, ∞)

 $[a,b] \iff a \leq x \leq b$ $(a,b] \cup [c,d) \iff a \leq x \leq d$

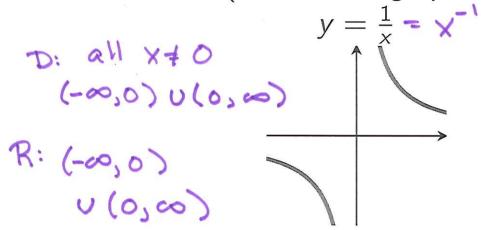
 $X = \frac{1}{X^2}$ $D: (-\infty, 0) \cup (0, \infty)$

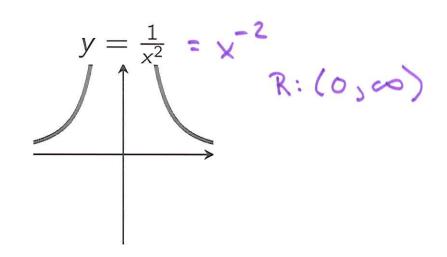
 $x^{-2} \times x^{-2} = x^{-1}$ $R:(0,\infty)$

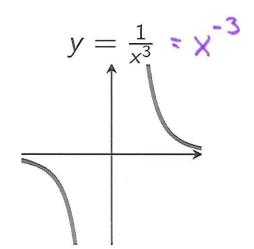
XaX=Xatb

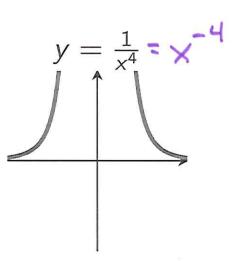
Other good functions to know: rationals.

$$y = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

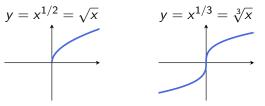




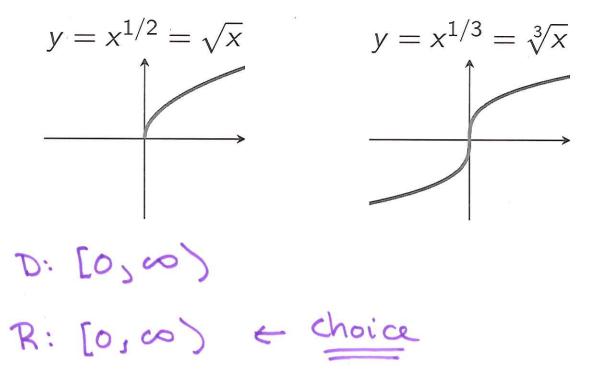


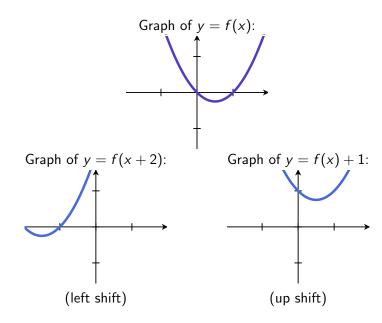


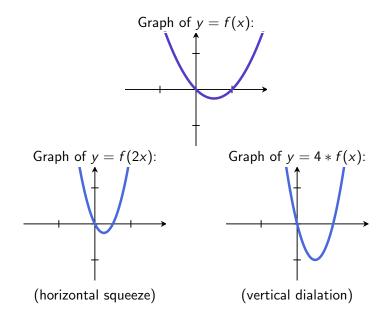
Other powers: $y = x^a$.

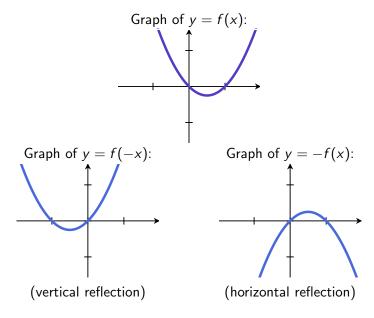


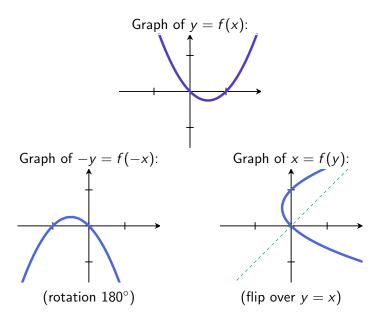
Other powers: $y = x^a$.











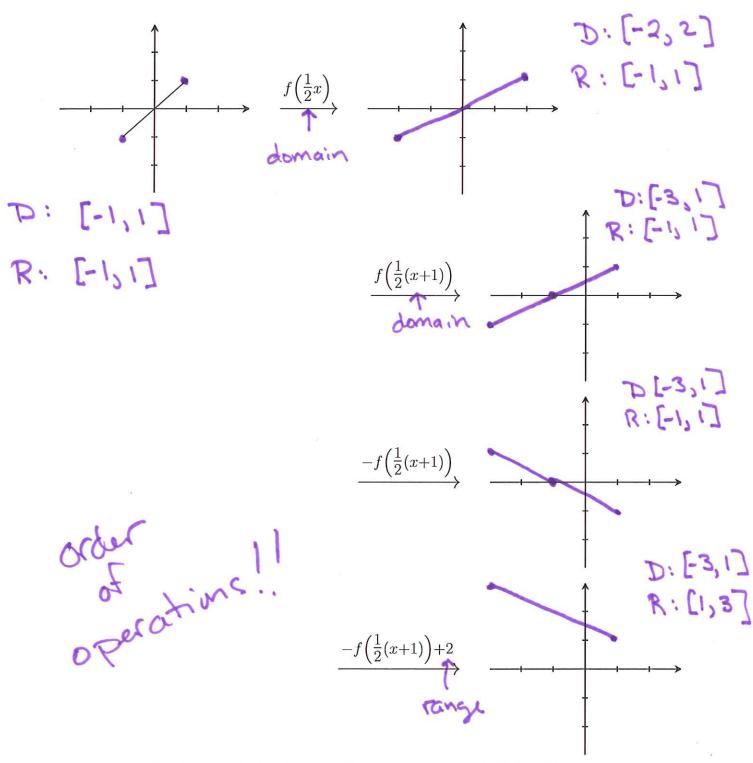
Example: See notes

Transform the graph of f(x) into the graph of $-f(\frac{1}{2}(x+1)) + 2$:



The *domain* of a function f is the set of x over which f(x) is defined. The *range* of a function f is the set of y which satisfy y = f(x) for some x.

Ex: Transform the graph of f(x) into the graph of $-f(\frac{1}{2}(x+1)) + 2$:



The domain of a function f is the set of x over which f(x) is defined.

The range of a function f is the set of y which satisfy y = f(x) for some x.

Symmetries

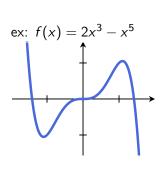
A function f(x) is even if it satisfies

$$f(-x)=f(x)$$

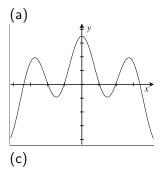
ex:
$$f(x) = 2x^2 - x^4$$

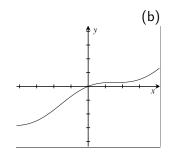
A function f(x) is *odd* if it satisfies

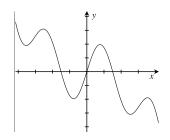
$$f(-x) = -f(x)$$



Examples: Even, odd, or neither?







(d)
$$f(x) = \frac{x^3 + x}{x + \frac{1}{x}}$$

(for this one: actually plug in -x and see what happens algebraically)

(d)
$$f(-x) = \frac{(-x)^3 + (-x)}{(-x)^3 + (-x)} = \frac{-x^3 - x}{-x - x}$$

= $-(x^3 + x)$

$$\frac{0dd}{0dd} = even$$

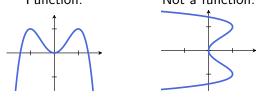
$$\frac{-(x^3 + x)}{-(x + x)}$$

$$\frac{-(x^3 + x)}{x^3 + x} = \frac{-(x^3 + x)}{x^3 + x}$$

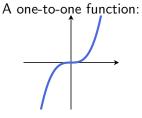
 $= \frac{x^3 + x}{x + x} = f(x)$ Even

A graph is a graph of a *function* if for every x in its domain, there is exactly one y on the graph which is mapped to by that x:

Not a function:



A function is additionally *one-to-one* if for every y, there is at most one x which maps to that y.



Inverse functions

Let f be a one-to-one function. If g is a function satisfying

$$f(g(x)) = g(f(x)) = x$$

then g is the inverse function of f. Write $g(x) = f^{-1}(x)$.

To calculate $f^{-1}(x)$, set f(y) = x and solve for y. Then $y = f^{-1}(x)$.

To get the graph of $f^{-1}(x)$, flip the graph of f(x) over the line y = x.

Inverse functions

Let f be a one-to-one function. If g is a function satisfying

$$f(g(x)) = g(f(x)) = x$$

then g is the *inverse function* of f. Write $g(x) = f^{-1}(x)$.

Example: If
$$f(x) = x^3$$
, then $f^{-1}(x) = \sqrt[3]{x}$

To calculate $f^{-1}(x)$, set f(y) = x and solve for y. Then $y = f^{-1}(x)$.

To get the graph of $f^{-1}(x)$, flip the graph of f(x) over the line y = x.

Inverse functions

Let f be a one-to-one function. If g is a function satisfying

$$f(g(x)) = g(f(x)) = x$$

then g is the *inverse function* of f. Write $g(x) = f^{-1}(x)$.

Example: If
$$f(x) = x^3$$
, then $f^{-1}(x) = \sqrt[3]{x}$

To calculate $f^{-1}(x)$, set f(y) = x and solve for y. Then $y = f^{-1}(x)$.

Example: If
$$f(x) = \frac{2x}{x-1}$$
,

solve
$$x = \frac{2y}{y-1}$$
 for y to get $y = \frac{x}{x-2}$.

So
$$f^{-1}(x) = \frac{x}{x-2}$$
.

To get the graph of $f^{-1}(x)$, flip the graph of f(x) over the line y = x.

Pair up graphs with their inverses:

