Written Assignment \# 14

Math 38

Due: Friday, May 6, 2005

Read Section 4.1

1. What is the difference between "k-connected" and "connectivity k "?
2. What is a Harary graph, $H_{k, n}$? Draw the $H_{4,7}$ and $H_{3,9}$.
3. What is $\kappa\left(H_{k, n}\right)$?
4. Define a "disconnecting set" of edges and an "vertex cut". Give an example of your favorite Harary graph and illustrate these two definitions by finding a disconnecting set and a vertex cut.
5. Why is $\kappa^{\prime}(G) \leq \delta(G)$?
6. Is it possible for $\kappa^{\prime}(G)<\delta(G)$? Give an example.
7. State Theorem 4.1.11 and outline a proof for this theorem making sure you state the main ideas in this proof.
8. What can you say about the edge connectivity and the connectivity of a 3-regular graph? What does this say about the Petersen graph?
9. Give an example of a minimum vertex cut (separating set) in the Petersen Graph. Find a vertex cut U in the Petersen graph such that U is not minimum, but there is no proper subset of U that is a vertex cut of the Petersen graph.
10. Is it true that $\kappa(G-v)=\kappa(G)$ or $\kappa(G-v)=\kappa(G)-1$? Explain.
11. Can we have a 3 -edge-connected graph that is not 2-edge-connected?
12. Give an example of a graph satisfying the following conditions or explain why it is not possible for the graph to exist.
(a) $\kappa(G)=2, \kappa^{\prime}(G)=3$, and $\delta(G)=4$.
(b) $\kappa(G)=3, \kappa^{\prime}(G)=2$, and $\delta(G)=4$.
