Written Assignment \# 12
 Math 38
 Due: Monday, May 2, 2005

Read Section 3.1

1. Is it possible for a tree to have more than one perfect matching?
2. Is it true that every graph of order 4 has a perfect matching?
3. Define a vertex cover and illustrate this concept on the graphs on Exercise 3.1.1.
4. Determine the minimum size of a maximal matching in a cycle C_{n} for all n.
5. What is the minimum size of an edge cover in the cycle?
6. What can you say about matchings and vertex covers in a bipartite graph? Give an example that illustrates Theorem 3.1.16 different from the one in the book.
7. Give an outline of the proof of Theorem 3.1.16.
8. Write a table with column 1 containing: $\alpha(G), \alpha^{\prime}(G), \beta(G)$ and $\beta^{\prime}(G)$, column 2: containing the definition for each of these symbols. Compute $\alpha(G), \alpha^{\prime}(G), \beta(G)$ and $\beta^{\prime}(G)$ for the Petersen graph.
9. In Page 115 relations between $\alpha(G), \alpha^{\prime}(G), \beta(G)$ and $\beta^{\prime}(G)$ are described, state all of these relationships.
10. Is it true that every vertex cover contains a minimum vertex cover?
