
1. A certain population initially contains P0 individuals.
(a) If left undisturbed the population doubles in size every T days. What differential

equation does the population function P = P (t) satisfy? Find P (t).
(b) Now, to help with part (c), make the very unrealistic assumption that there is no

change in the population except that R individuals are removed from it each day
at a uniform rate. What differential equation does the population function P (t)
now satisfy, and what is P (t)?

(c) Assume now that the population doubles in size every T days if left undisturbed
and that R individuals are removed from it each day. What now is the relevant
differential equation and its solution P (t)?

(d) Show that the function P (t) found in part (c) is qualitatively different for different
values of the ratio P0/R. What value of P0/R is critical with regards to the
qualitative nature of the function P (t)?

(e) To what extent can part (d) be easily answered without solving the differential
equation of part (c)? Is the critical value of P0/R found in part (d) an equilibrium
point? Stable or unstable?

(f) Describe an ecosystem which part (c) models fairly well.

2.
(a) Consider an ecosystem consisting of three interacting populations: fish, seals,

and Eskimos. Assume that the Eskimos are entirely dependent on seals for food,
that the seals eat only fish, and that the fish have an inexhausible food supply.
Formulate a system of differential equations, involving E, F,and S the number
of Eskimos, fish, and seals respectively, which models this ecosystem reasonably
well.

(b) Repeat part (a), except assume that Eskimos eat both fish and seals.

3. Suppose that we incorporate logistic growth into one of the two populations in the
competitive hunters model. Then the relevant equations are

dx

dt
= a(M − x)x− bxy and

dy

dt
= py − cxy.

Find the equilibrium points and null clines of these. Sketch enough trajectories in the
phase plane so that the qualitative nature of every solution is apparent. How does the
long-term behaviour of the solutions depend on their initial values? Which, if any,
of the equilibrium points are stable? (Note that there are at least two alternatives
depending on whether M > p/c or not. Investigate both cases).



4. Consider the system of differential equations

dx

dt
= y − cx(x2 + y2) and

dy

dt
= −x− cy(x2 + y2)

where c is any positive constant.
(a) Show that the only equilibrium point is (0, 0).
(b) Partially solve the system by first combining the two equations to get

x
dx

dt
+ y

dy

dt
= −c(x2 + y2)2 or

1
2
d

dt
|v|2 = −c|v|4

where |v| =
√
x2 + y2 is the length of the vector v = 〈x, y〉. Then think of |v| as

the unknown function in the last differential equation, and take the derivative of
|v|2 in it to get another differential equation. Solve this for |v| = |v(t)|. What is
limt→∞ |v(t)|? Is (0, 0) a stable or unstable equilibrium? Why?

(c) What is the linearization of the system at (0, 0)?
(d) Find the exact trajectories of the linearized system. Is (0, 0) a stable or unstable

equilibrium of the linearized system? How do the system and its linearization
compare in this regard?

5. Consider the system

dx

dt
= (1− x)x− 2xy and

dy

dt
= (1− y)y − 2xy.

It models competitive hunters, or competing populations in general, with a growth
constraint on each population. It’s identical to the system considered in class except
for the constants in the terms containing xy.
(a) Find the equilibrium points and determine which are stable and which are unsta-

ble.
(b) Can the populations coexist or will one become extinct in the long run? Does the

answer to this depend on the initial conditions? You may need to sketch some
trajectories for this, or at least some null clines.

(c) How would you expect the answer to part (b) to depend on the constants in front
of the xy’s in the system? Does your work confirm your expectations?


