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 1. INTRODUCTION

 The use of matrices in population mathematics has been discussed in a previous paper

 (Leslie, 1945), and some of the properties of the basic matrix representing a system of age-

 specific fertility and mortality rates have been described both there, and also in an earlier

 paper by Lewis (1942).t The purpose of the following notes is to enlarge on a few points left

 over from the earlier work, and in the later sections to extend the use of matrices and vectors

 to the case of the logistic type of population growth and to the predator-prey type of relation-

 ship between two or more populations.

 In order to save a troublesome amount of cross-referring, it may perhaps be a convenience

 if the definitions and properties of the basic vectors and matrices are summarized here, and

 also if a brief account is given of the various transformations which are at one time or another

 used in the theoretical development. For fuller details reference may be made to the appro-

 priate section of the original paper.

 As before, for the sake of simplicity, the female population only will be considered, and

 the same unit of age will be adopted as that of time. If m to m + 1 is the last age group in the
 r+1

 complete life-table distribution defined by Lx = J lzdx (taking lo = 1), and we put

 PI (x = 0, 1, 2, ...,m- 1) = L+lL = the probability that a female aged x to x + 1 at time t
 will be alive in the age group x + 1 to x + 2 at time

 t+1,

 F, (x = 0, 1, 2, ..., m) = the number of daughters born in the interval t to t+ 1 per female
 alive aged x to x + 1 at time t, who will be alive in the age group

 0 to 1 at time t+1,

 t At the time my original paper was published I was not aware that the same problem had already
 been investigated by Lewis (1942). This author establishes the form of the basic matrix and discusses
 a number of its properties, including the role of the dominant latent root and the form of the stable
 age distribution. He suggests that the rapidity with which an arbitrary age distribution settles down
 to the latter form will depend on the difference between the dominant and subdominant root of the
 characteristic equation, and he also discusses the type of matrix in which there is only a single non-zero
 element in the first row. It is clear, therefore, that unwittingly I covered a good deal of ground which

 had already been covered by him. I am indebted to Prof. M. S. Bartlett and Dr S. Vajda for this
 reference.

 Biometrika 35 I4
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 214 Matrices in population mathematics

 we are led to consider the square matrix M of order m + 1 which has the Fx figures in the first

 row and the Px figures in the subdiagonal immediately below the principal diagonal. For
 many purposes, however, it may not be necessary to deal with the matrix M as a whole.

 Thus, if x = k is the last age group within which- reproduction occurs, all the Fx figures for
 x > k will be zero and the determinant i M I = 0. Partitioning the matrix symmetrically at
 this point the principal, non-singular, submatrix is

 Fo F1 F2 F3 ... F F

 _~ ~~ 3 k k- *k

 PO.

 As before an arbitrary age distribution will be written as the column vector 6, different
 age distributions being distinguished by different subscripts. The number of elements com-

 posing a 6 vector may be either m + 1 or k + 1 depending on whether the particular age
 distribution considered is complete, or confined only to the pre-reproductive and repro-

 ductive age groups. Associated with each Ex there is a uniquely determined vector 'x, which in
 matrix notation is written as a row vector, the square of the length of the vector Ex being
 given by the scalar product qxEx. If the age distribution Ex is complete, consisting of m + 1
 elements, the last m - k elements of the associated vector yx will all be zero. Generally speak-
 ing, however, the post-reproductive age groups can be neglected, more particularly in the

 theoretical development, and unless otherwise stated it will be assumed that we are dealing

 with y and 6 vectors consisting of k + 1 elements which are subject to the system of rates
 represented by the submatrix A.

 It was shown in the previous paper (Leslie, 1945, ? 5) that it is convenient for many

 purposes to pass to a new frame of reference, the vectors y and 6 and the matrix A undergoing
 the non-singular linear transformations

 v = OSH, 6 = H-1Vr, B = HAH-1,

 where H is a diagonal matrix with elements (POP, P2 ... Pk-l), (P1 P2P3 ... Pk-,), * , (4k-24k-1),
 Pk-,J 1, which are derived entirely from the life table. (If the matrix M is the subject of the
 transformation instead of A, the matrix H may be suitably enlarged and will include all the

 Px figures down to Pm-1.) It will be noted that in this collineatory transformation the square
 of the length of a vector is an invariant, and that the matrices A and B have the same
 characteristic equation and, therefore, the same latent roots.

 The effect of this transformation on the elements of A is to replace the Px figures in the
 principal subdiagonal by a series of units, and. thus to reduce A to the rational canonical

 form. In biological terms it is equivalent to transforming the original population into one
 in which all the individuals live until the span of reproductive life is completed at the age

 of x = k + 1. This imaginary type of population, with which in many ways it is more con-
 venient to work, might be termed the canonical population.

 When the relation between two column vectors is such that

 BIfa = A3lfa)
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 P. H. LESLIE 215

 where A is a scalar, then ?/a is termed a stable 3b appropriate to the matrix B. Similarly in

 the case of initial row vectors, if Oa B = Aba)

 then OaC is a stable q5 appropriate to B.
 It may be shown that corresponding to each distinct latent root Aa of the characteristic

 equation of B, l B-Al I=O,

 there is a pair of stable vectors Oa and Vfa which in the usual way may be normalized so that
 Ota Vpa = 1. In the case when all the k + 1 latent roots of B are distinct, the normalized stable
 Vf form a set of k + 1 independent and mutually orthogonal vectors of unit length, and any
 arbitrary Vfx may be expanded in terms of them, viz.

 f x= 01 f+ C2 2 + c3 Vf3 + * * * + . k+1 .k+l

 where the coefficients ea may be either real or complex. Similarly the associated row vector

 x can be expanded in terms of the stable 0,

 Ox = e1 + .2O2 + * + ek.0k.l

 where ea is the complex conjugate of Ca in the expansion of Vrx. Similarly, by transforming
 back to the original co-ordinate system, any arbitrary Ax can be expanded in terms of the
 stable 6 and its associated vector yx in terms of the stable n.

 Since only one of the latent roots, and this the dominant one of the matrix B, is real and

 positive, only one of the stable ?f will consist of real and positive elements. It is this stable

 61= H-'V/l, associated with the dominant root Al, which is ordinarily referred to as the
 stable age distribution appropriate to a given set of age-specific fertility and mortality rates.
 The relation between the inherent rate of increase (r) and the dominant root of the matrix

 is given by log, A1 = r.
 There is one further transformation of the matrix B which is of some theoretical import-

 ance. The expansion of an arbitrary Vfx in terms of the normalized stable V# may be written

 in matrix notation as /x = QCx,
 where the columns of the matrix Q consist of the stable Vb arranged from left to right in
 descending order of the moduli of the roots with which they are associated. In the same way

 the expansion of an arbitrary Ox may be written

 qx = C U,
 where eC is the transposed complex conjugate of the vector cx, and the rows of the matrix U
 are formed by the stable 0 arranged in a similar order from above down. Since the normalized
 stable vectors have the properties

 = 1 (a-b),

 -) b=o (Cam b),

 it follows that U and Q are reciprocal matrices (UQ = I). In this transformation to an
 orthogonal co-ordinate system the length of a vector remains an invariant and the matrix

 B becomes UBQ = UHAH-'Q = C,

 where C is a diagonal matrix whose elements are the latent roots of B (reduction to classical
 canonical form).

 Since an arbitrary age distribution Vrx = H6x must necessarily consist of real and posi-
 tive elements, and since x = Qcx,SOx = e U, we have fOx = V1xr U'U = 0k G, where G is a

 14-2
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 216 Matrices in population mathematics

 symmetrical matrix of real elements. Thus, in terms of the original co-ordinate system,

 since H is a diagonal matrix unaltered by transposition,

 = ZHGH.

 The matrix HGH, or G if the work is being carried out in terms of the canonical population,
 has the important property of converting a column vector into the associated row vector.

 The reciprocal relationship is given by

 gX= H-10-'H-18

 where G-1 = QQ'. For further properties of the metric matrix G see the previous paper
 (Leslie, 1945, ? 11).

 It may perhaps be of interest if the actual values of some of these matrices are given for

 a simple numerical example, which will be used in some of the later sections in order to

 illustrate certain points. Although this example is purely a mathematical model bearing

 no relation to any known species, its properties are the same as those which might be observed

 for a population of living organisms considered in a small number of age groups, and for

 convenience biological terms will be used throughout in interpreting the results obtained

 with this matrix. Suppose, then, we have an entirely imaginary population which can be'

 considered in four age groups, and let the life table or stationary age distribution be given

 by the Lx values forming the column vector {0 9, 0 7, 0 5, 0 3}. Further let the matrix

 0 45/7 18 181

 7/9 0 0 0
 A = I(1.-1)

 = 0 5/7 0 0]

 0 0 3/5 0

 Then, since H is the diagonal matrix with elements h1l = POP1P2, h22 =P1 P2) h33= P2,
 h44 = 1, we have

 -1/3 0 0 0~

 H 0 3/7 3 0]
 0 0 3/5 0

 0 0 0 1-

 -0 5 10 61

 1 0 0 0
 and HAH-1I= B=

 0 1 0 0

 0 1 0

 The characteristic equation B - AI = 0 is, when expanded in powers of A,

 A4-5A2_ 10OA-6 = 0;

 and the latent roots are therefore Al = 3; A2,A3 = -1?i; A4 =-1. In the transformation
 to the classical canonical form UBQ = C, the matrix

 F27 4*9985 + 6*4019i 4-9985- 6-4019i V(17) i
 Q 1 I9 07017 - 5-7002i 0-7017 + 5-7002i - V(17) i

 V(68) 3 3-2010 + 2-4992i - 3-2010 - 2-4992i V(17) i

 l 1 2-8501 + 0 3509i 2-8501-0-3509i -V(17)iJ
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 P. H. LESLIE 217

 ~ 1 3 4 2

 U 1 2-8501 +03509i -3-2010+2*4992i - 13-5488-7-4545i - 7-4977-9-6029i

 4(68) 2-8501-0-3509i -3-2010-2-4992i -13*5488+7-4545i -7-4977+9-6029i
 - 4(17)i V(17) i 4.4(17) i 6.4(17) i

 0-5072 -0-4484 -2-1539 -2-19821

 and c = U'U 0-4484 0-8674 1-9041 1V5882
 12-.1539 1-9041 11-2688 11-2109

 2-1982 1-5882 11-2109 13-4245]

 where in each case the elements have been rounded off to the fourth decimal place.

 Since the ath row of the matrix U is the stable vector Oa which is associated with the stable
 Hfa vector given by the ath column of Q, it is possible to construct readily from their rows
 and columns the set of four matrices Sa = 1fraV5a, which have the properties (Leslie, 1945, ? 9)

 SI = Sax SaSb = 0 (at+b), Sa = I.
 a

 If f(B) is a polynomial of the matrix B, we have when the latent roots of the matrix are
 distinct, k+ I

 f(B) = E f(A) Sal
 a=1

 Thus Bt = AtSl + AlSs + * + Al.+lSk+l,

 so that in the present example, when the matrix B is raised to a high power and At is much
 greater than all the remaining At,

 27 81 108 54]

 9 27 36 18

 1 3 4 2

 and hence, by transforming back to the original co-ordinate system,

 81 312-4283 583-2 4861

 21 81-0000 151-2 126
 H-"BIH = At oc

 5 19-2857 36-0 30

 1 3-8571 7*2 61
 for large values of t.

 2. THE STABLE FEMALE BIRTH-RATE

 Once the dominant latent root of the matrix has been found, there is one comparatively simple
 way of calculating the stable age distribution. Thus, working in terms of the canonical

 population and m + 1 age groups, the stable ?I-, appropriate to the root Al may be taken pro-
 portional to the column vector {Al, Am-11, ..., A1, 1}, and by operating on this vector with the
 matrix H-1, the stable age distribution 61 can readily be obtained. The method which was
 used previously for calculating the stable female birth-rate was then to operate on this

 distribution with the maternal frequency figurest (ml) and thus determine the total number

 f The maternal frequency m,, is the mean number of live daughters born per unit of time to a female
 aged x to x + 1. They are the figures tabulated in the usual type of fertility table and are not the same
 as the F1, figures forming the first row of the matrix.
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 218 Matrices in population mathematics

 of female births which might be expected per unit of time (Leslie, 1945, ? 16). Although it

 seems likely that no very great error would be made in employing these methods, both the

 stable age distribution and the stable birth-rate can be defined rather more formally for the

 discontinuous case, and the appropriate equations can be derived for calculating them

 directly when the work is being carried out in terms of discrete age groups.

 Consider at time t a stable age distribution 6(t) appropriate to the dominant latent root
 A of the matrix M, and let nx (x = 0, 1, 2, ..., m) be the elements of this column vector. Then
 by the definition of a stable vector

 9(t-x) = A-X6(t)
 If B(t) = the number of daughters born alive in the whole population in the interval of time

 t to t + 1, it is easily seen that since nx are the number of individuals alive aged x to x + 1,

 Ano = LOB(t),

 An, = Pono

 = LiB(t- 1),
 and in general Anx =Lx B(t-x).

 If we put

 7rx = the proportion of the stable population alive in the age group x to x + 1,

 and N(t) = the total number of individuals alive in the stable population at time t;

 Lx B(t-x)
 x N(t+ 1)

 Defining the birth-rate fi = B(t)/N(t),

 we have in the case of the stable population,

 B(t - x) = /JN(t - x) .;--N(t) A-x,

 so that 7x = flLXAZX+l) (2.1)

 an expression which defines the matrix stable age distribution. From this it follows, since
 m

 Sa=1,
 0

 1m
 that ,6 - B L= A s+'). (2.2)

 that ~~~~~~~~x=0

 This argument for the case of discrete age classes is, of course, developed along lines similar

 to those followed by Lotka (e.g. 1939, p. 16) for the continuous case, where, if cx is the
 proportion of the stable population aged between x and x + dx and b the instantaneous
 birth-rate, 1 a)

 cX = be-rxlx and -=J e-rxlxdx. (2.3)

 The birth-rate , as defined by (2.2) is, however, a different type of birth-rate to that
 defined by (2 3). It is the total number of births taking place in the interval of time t to t + 1

 expressed per head of population at time t. If D(t) is the number of deaths occurring in the
 same interval and a = D(t)/N(t),

 N(t + 1) = N(t) + B(t)-D(t),

 and thus, in the case of the stable population,

 A= 1+,/-d.
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 P. H. LESLIE 219

 In order to express the relationship between , and b, we might consider that in the con-

 tinuous case the number of births occurring during the interval of time t to t + 1 will be

 given by B(t) = bN(t) errdr,

 whence = b (e1
 r

 or, since log, A = r, b = f'log"A (2.4)
 As an illustration of the comparative results obtained by applying these equations, we

 may take the same imaginary population of Rattus norvegicus as was used previously as

 a numerical example (Leslie, 1945). In the appendix to that paper it was shown that for the

 given system of fertility and mortality rates the value of r, estimated by the more usual

 methods of computation, was 0-44565, and that b = 0-51265, this value of the birth-rate

 being obtained by the numerical integration of (2.3). When the system of rates was expressed

 in the form of a matrix of order 21 x 21, the dominant root was Al = 1P56246, or r = 0-44626,
 and using equation (2.2) 3= 0-64839, and from (2.4) b = 0-5144. The agreement between

 these estimates of the stable birth-rate is reasonably close and suggests that when we have
 already calculated the life table age distribution, which is so often the case, equations (2.2)

 and (2.4) of this section will provide an alternative method of calculating b, which would
 save a great deal of the tedious labour involved in the numerical integration of (2 3). Although

 theoretically it is necessary to consider the entire age span of the life table in applying these

 equations, this was not done in the present instance. In the numerical example given above

 the value of the rate of increase is so high that the post-reproductive age groups could be

 neglected without any very great error.

 The stable birth-rate and death-rate of the transformed or canonical population ('Vl
 vector) are perhaps only of academic interest. In this connexion, however, there is a small

 point worth mentioning in order to correct a misstatement which was made in the previous

 paper. In a footnote (p. 208) it was there stated that 'in the transformed population the

 death-rate = 0'. Strictly speaking this would only be approximately true under certain
 conditions; for, if in the case of the stable canonical population

 A= 1+l'-&',

 where dashes are attached to the symbols in order to distinguish them from those used above,
 we have by putting Lx = 1 in (2.2) and carrying out the summation,

 = Am+l(A- 1)
 -Am+l_

 and hence = A-1
 Am+1 - 1

 which will approach zero as Am+l becomes large. Actually in the numerical example given

 in the footnote referred to, the value of Am+l was sufficiently great for d' to be taken as

 approximately zero without any very serious error being incurred.

 3. THE BIOLOGICAL SIGNIFICANCE OF THE ROW VECTORS

 The columns of the matrix Ml are a measure of the contributions made by each age group to
 the total population at time t. Thus, for example, if there were nj individuals alive in the age

 group j to j+ 1 at t = 0, the number and age distribution of their living descendants and
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 220 Matrices in population mathematics

 survivors at time t could be found by multiplying the elements in the (j + 1 )th column of Mt

 by nj, and hence their total contribution to the population at this time is given by nj times
 the sum of these elements. It was shown previously (Leslie, 1945, ? 4) that for values of

 t > m - k, where x = k is the last age group within which reproduction occurs, the last m - k
 columns of Mt will consist only of zero elements, an expression of the obvious fact that

 individuals alive in the post-reproductive age groups contribute nothing to the population

 after they themselves are dead. From the point of view of the contributions made to the

 future population by the individual age groups, it is the submatrix At which is principally

 of interest. When t becomes very large, At can be taken as being proportional to the matrix

 H-lS1H = H-l'VrflbH = 61,1

 and therefore the sums of the elements in the columns of At must be proportional to the row

 vector ,1. Since a population with an arbitrary age distribution tends ultimately to approach
 the stable form, provided that the system of age-specific fertility and mortality rates remains

 constant, it follows that the normalized row vector associated with the dominant latent root

 provides a measure of the relative contributions per head made to the stable population in

 the future by the individual age groups. Thus, supposing we have two arbitrary age dis-

 tributions 6x and 4,, both subject to the same constant system of age-specific rates, the ratio
 between the total number of individuals in the two populations would, as time went on

 tend to the figure R - 1 6X

 If, instead of regarding 6x and 6, as two separate populations, we regard them as two com-
 ponents of an age distribution 6_, it is thus possible to estimate their relative contributions
 to the population in the future, subject to the condition that the system of rates represented

 by the matrix A remains constant.

 If, in this expression for R, we put 4, = 61, the normalized stable vector associated with
 the dominant root of the matrix, we may write

 V= =1NX

 or, since the angle between two vectors 6x and 4,, of lengths x and y respectively, is

 coso = Y' , V = x cos O, yx x

 where Ox is the angle 6x makes with the stable vector 61 of unit length. Thus, when 6x is the
 stable form of age distribution (= cel 6), the quantity V is the same as the length of the
 vector 6, since cos Ox = 1, and when the population is not distributed as to age in the stable
 form, 0 < V < x. The rate of increase of Vwith regard to time is dV/dt = rV, since V(t) = Al V(0).

 This quantity V appears to be essentially the same as that termed the total reproductive

 value of a population by Fisher (1930, p. 27). In discussing the equation

 f erIxmlmdx= 1,

 by means of which the inherent rate of increase r is usually calculated, Fisher points out the
 close analogy between a population increasing geometrically and the growth of capital

 invested at compound interest. Thus the birth of a child can be regarded as the loaning to

 him of a life and the birth of his offspring as a subsequent repayment of the debt. Then,

 'a unit investment has an expectation of a return lx mdx in the time interval dx, and the
 present value of this repayment, if r is the rate of interest, is e-rxlxmxdx; consequently the

This content downloaded from 71.235.189.167 on Mon, 13 Nov 2017 01:32:11 UTC
All use subject to http://about.jstor.org/terms



 P. H. LESLIE 221

 Malthusian parameter of population increase is the rate of interest at which the present

 value of births of offspring to be expected is equal to unity at the date of birth of their parent'.

 (In this quotation the original symbolism has been changed to that used here; Fisher writes

 m, the Malthusian parameter, instead of r, and the maternal frequency bX instead of min.)

 Fisher then goes on to say that 'we may ask, not only about the newly born, but about persons

 of any chosen age, what is the present value of their future offspring; and if the present value

 is calculated at that rate determined as before, the question has a definite meaning-To

 what extent will persons of this age, on the average, contribute to this ancestry of future

 generations?' He then defines the reproductive value which can be assigned to a person

 aged x as erx )r d
 x Ix

 Thus, by assigning to each of the n_ persons aged x the appropriate value vx and summing
 over all age classes of a given age distribution, a figure which Fisher terms the total repro-

 ductive value of the population may be obtained. He also pointed out that this total repro-

 ductive value would increase or decrease according to the correct Malthusian rate r.

 It was not difficult to show on an actual numerical example that the values of vx were the
 same, apart from a scale factor, as the elements of the 81 row vector after allowing for the
 fact that the latter refer to a population considered in discrete age groups, whereas the former

 refer to values of x which vary continuously; and it was evident that the calculation of the

 quantity V defined above was essentially the same as the calculation of Fisher's total

 reproductive value of the population.

 There is, however, one important point in regard to the argument developed by Fisher

 which has been quoted. The present value of the repayment lxmxdx is taken to be e-xlxmmx dx,
 where r is the rate of interest. But, in the case of a population, this estimate of the present

 value would only be valid if the whole population were increasing at a rate r, and this would

 only be true when the stable form of age distribution was established. In other words, the

 *reproductive value vx assigned to a female aged x is the present value of her future daughters
 only when that female and her daughters are considered as members of a population with

 a stable age distribution. That this is so may be seen from a numerical example. Let us sup-

 pose we are given the age distribution

 6a = {81, 21, 5, 1},
 which is a stable 6 appropriate to the dominant root Al = 3 of the numerical matrix A (1 1)
 defined in the introduction. In one unit of time the population-will be Aaa = Al6a and these
 individuals will be either survivors or descendants of the original population. Each individual

 alive in the latter will contribute on the average so many living individuals to the population

 at t = 1, and we wish to assess the present value of that contribution. Consider first of all

 the solitary female alive in the last age group. In one unit's time this individual will be no

 longer alive, but she will have contributed F3 = 18 living daughters to the population at

 that time. The present value of that contribution will therefore be F3/A = 6, and this is the

 present value which may be attached to each individual alive in this age group of a stable

 population at any given time. Passing to the five individuals in the next younger age group,

 5P2 = 3 will be alive in the fourth age group at t = 1, and each of these three will be valued

 then at 6 or a total of 18. They will also have contributed 5F2 = 90 daughters. The present

 total value of the contribution made by these five individuals will be therefore

 (90+ 18)/3 = 36.
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 222 Matrices in population mathematics

 or 7-2 per head. In the same way the 21 individuals in the second age group will each be

 valued at 3-85714 and the 81 in the first age group at 1 each. These values which have been

 determined in this way may be written as the row vector

 = [1, 3-85714, 7-2, 6],

 where an asterisk is attached to the symbol in order to distinguish this vector from the true

 normalized form for this particular matrix, namely,

 g11 =V1(68) [?', 1-28571, 2-4, 2], and it will be noted that y* = 3. V(68) n1. It is clear from this example that this method of assessing the present value of the con-
 tribution made by each female aged x to x + 1 to the population at time t+ 1 is equivalent to

 determining the present value of her future daughters, and that the valuation can only be

 carried out in this way when that female and her daughters are considered as members of

 a stable age distribution. Symbolically the equation which defines the elements yx
 (x = 0,1, 2, ..., k) of the vector I*, and which is equivalent to that given by Fisher for vx in
 the continuous case, is k

 E A-(x+l)Lx~x
 X

 YX L X~ Ax LXA-X
 and by an obvious extension to the case of stable 'age distributions' consisting of complex

 or negative individuals, the stable I* representing the present value of the 'contributions'

 made by each individual could be calculated similarly for each distinct latent root Aa of

 a given matrix A. Moreover, it is evident in each case yx = 0 for all values of x > k, the last
 age group in which reproduction occurs.

 The use of these row vectors in the form I* has, however, certain disadvantages, more

 particularly when it is necessary to compare the total present values of two stable age

 distributions which are each subject to a different system of rates of death and reproduction.

 It will be seen from the above equation defining vx that if the maternal frequency is measured
 in terms of daughters, we must have in all cases v0 = 1, since

 fe-rxlxmxdx 1 and lo 1.

 Similarly in the discrete case, the value of yo may be written, making use of the relationship

 (POP1P2 ... Px) = L4+1L,
 F0 P OF P0P1? (P0

 Y=A+ A2 + A3 + + Ak+1

 which must be equal to unity, since from the characteristic equation of the matrix

 Ak~~~~l _ okP~Ak-1 _.*-(PO P1 ... Pk-2) Fk-1 A -(PO P1 ... Pk-1) Fk = 0-

 Thus, as exemplified in the numerical illustration given above, the vector y? will always have

 its first element equal to unity and will in general differ from the normalized il by some scalar
 factor. The vector y* measures the total value of a stable population on a different scale, or

 in a different system of units, to those in which the present value is measured by the vector

 71. But the question of the respective units in which a number of such values are expressed
 might become of importance if two or more stable populations subject to different systems
 of rates were being compared. Suppose these rates are represented by a number of different
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 matrices Al, A2, ..., A., which will be assumed to be all of the same order. If the series of
 reproductive values for the individual age groups is taken as the row vector I* appropriate
 to each of the given matrices, the first element of each vector will necessarily be unity as has

 been shown above. That the use of these vectors in this form for calculating the total present

 value may lead to unsatisfactory results for the comparison between two stable populations,

 can be seen from a simple example. Suppose each element of the numerical matrix A defined

 in the introduction (1.1), and which we will now call Al, is divided by a factor of 3. The
 resulting matrix-say A2-can then be taken as representing a new system of rates which

 has a dominant latent root A1 = 1. The stable age distribution 6a = {81, 21, 5, 1} of A1 is,
 however, also a stable 6a of A2 appropriate to this root. If the stable y* for the second matrix
 is calculated as before the elements will be the same as those given above for the original

 matrix. The total present value of the population represented by 6a, would therefore be
 estimated at the same figure whichever of the two systems of rates it was subject to. If then

 these were two separate populations with rates Al and A2, which happened to have identical
 age distributions, a comparison between them by means of the total values calculated in

 this way is not very informative. The easiest way out of this difficulty would be to use only

 the normalized y1 associated with the dominant latent root of each matrix in calculating the

 total present value of a stable population for the purpose of comparing it with that of

 another. This procedure allows for any difference in what may be termed the respective

 scales of the two matrices. For this particular example, the normalized Yi associated with

 the root Al = 1 of the matrix A2 is

 21 = 7(628)5 [0., 1-28571, 2 4, 2]

 =- 192459711,

 where the initial of the two suffixes refers to the matrix with which the vector is associated.

 The total value of a population with an age distribution 6a would therefore be 8-2462 if it
 was subject to the system of rates represented by the matrix Al, and 1-5870 when subject
 to A2. Thus the use of the normalized row vectors instead of the form I* leads to a different

 value being placed on each of the two populations corresponding to a difference in the

 systems of rates to which they are respectively exposed.

 We may conclude, therefore, that in calculating the total value of a stable population it

 will in general be preferable to use the normalized stable row vector Y1 and not the form y1.
 The one form, however, can be readily transformed into the other. For, working in terms of

 age distributions confined to the prereproductive and reproductive age groups, if the

 elements of I* are calculated by means of the above equation for yx, the relationship between
 y~and Yi is given by Y PP..,1 d()A

 81 andglisgivenb 7/1 = (PO Pl 2 ..Pk-11 t dA 981'

 where df(A)/dA is the characteristic equation of the matrix differentiated with respect to A,
 in which the numerical value of the dominant root is inserted and the square root taken

 with a positive sign. Thus, for the numerical example which has been used previously in

 this section, the characteristic equation of the matrix A defined by (1. 1) is

 f(A)=A4-5A2_ 1OA-6,

 and =d(A) - 4A3 _ bA- 10. and ~~~~~dA
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 For A1 = 3, we have (dA) 4(68),

 and, since POP P -= - for this matrix,
 1 *

 1= 3=(68) q1

 corresponding to the difference between these two vectors which was noted above. Although

 this procedure has been illustrated in terms of the dominant root of the matrix, it can be

 similarly carried out for any stable y* appropriate to a latent root Aa. Alternatively, the

 normalized row vectors may be readily calculated in terms of the canonical population and

 the matrix B = HAH-1 by the methods described in the previous paper (Leslie, 1945, ?? 7

 and 8), and transformed back again by means of the relationship y = OH.
 If Fisher's total reproductive value of a population is written in terms of vectors as the

 scalar V = ql6 = Xcos5x,
 it follows, as was pointed out earlier in this section, that when the population represented

 by the vector 6x is of the stable form of age distribution, we have V = x, the length of x.
 The total reproductive value, or the total present value, of a stable population is therefore

 given by the length of the vector representing the age distribution of the population. Now

 any population of individuals with a stable form of age distribution Ea can be represented
 as a multiple cl 61 of the normalized stable 6 associated with the dominant root of the matrix,
 and its associated vector fa as a multiple -clq of the normalized yl, the square of the length of
 6a being given by Vaga. We may thus regard the vector Va = COYi, which is associated with
 the vector 6a = cl 61, as the representative of the population in terms of the individual present
 values according to age, just as the vector 6a is the representative of the population in terms
 of numbers according to age. Although we have been here considering only the total present

 value of a population of real positive individuals distributed as to age in the stable form,

 which must necessarily involve only one of the stable y or 6 for a given matrix, there is little
 difficulty from the mathematical point of view in considering 'populations' consisting of

 negative or complex individuals, and we may extend the arguments used for the real case

 so as to include all the stable vectors for the matrix. Thus, the length of any stable vector,

 6a say, which fulfils the condition A a = Aa a, can be regarded as the total present value of
 the 'population' represented in terms of numbers by 6a and in terms of individual present
 values by its associated vector Ya.

 Since any arbitrary age distribution of real individuals 6 can be regarded as the sum of
 one or more mutually orthogonal stable 6, viz.

 6x = C161 + C262 + ***+ Ck+k+l

 and its associated vector yx similarly as the sum of a number of associated stable y

 qx = C1 1 + C22 + C3 + *+ Ck+l.. kil)

 and since the total present value of each of the component stable vectors is given by the

 length of that vector, namely V(caCa), the total present value of the resultant 6x will be given
 by a( Ca), which is the length of the vector 6,

 The row vectors which were originally introduced into this theoretical discussion solely

 for mathematical reasons are thus not entirely without interest from the biological point of

 view. The uniquely determined vector nx which was assumed to be associated with each 6X
 is a measure of the present value of the contribution made to future generations by an
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 individual aged x to x + 1 when that individual is considered as a member of a population

 with an age distribution 6. The row vectors appear to form a more generalized system of
 weights or values which we attach to an individual aged x to x + 1 than the reproductive

 values vx defined by Fisher. The latter are represented by a single member of this class of
 vectors, though one of particular importance owing to its association with the dominant

 root of the matrix.

 Finally there is one further row vector which is very easily calculated for a given system of

 age-specific fertility and mortality rates, and which on occasion may be useful in studying

 the comparative fertility of different populations. The net reproduction rate,
 00

 R= f1%m dx. R0 = IX~X

 in addition to its usual meaning, may also be defined as the expected number of daughters

 which will be born on the average by a female now aged 0 during the remainder of her life-

 time. It is in fact a figure which is analogous to the expectation of life at birth, only in terms

 of future daughters. Now, in addition to the newly born, we may also enquire what this

 expected number of daughters will be in the case of a female alive at any age x. Clearly this

 figure is given by, 1 crc'
 x- I lXmXdx,

 with u0 =Ro. Similarly, in the discrete case, we may consider an y row vector of which the
 elements zx (x = 0, 1, 2,.. .,) are k

 xXX

 and it will be found that this is merely a multiple of the y* vector appropriate to the dominant

 root Al1 = of the matrix for a stationary population which is obtained by dividing each of
 the Fx figures in the first row of the matrix A by the net reproduction rate.

 4. THE TOTAL REPRODUCTIVE VALUE OF A POPULATION AND THE LENGTH OF A VECTOR

 It appears from the foregoing discussion that the elements of the normalized row vectorql
 can be regarded from two slightly different points of view. On the one hand they provide

 a measure of the relative contributions per head made by each age group to the stable popula-

 tion in the future, and this property arises from the fact that the sums of the columns of the

 matrix Al can be taken as proportional to the elements of this vector when t becomes very

 large. On the other hand this vector is also associated with the column vector 61 representing
 the stable age distribution appropriate to a given matrix, and in this sense its elements are

 a measure of the present value of the contribution made to future generations by an in-

 dividual aged x to x + 1 when that individual is considered as a member of a population with

 a stable age distribution. This difference is of importance in making any practical use of

 Fisher's total reproductive value of a population, which is defined here as V = ql X, where
 6x is an arbitrary age distribution.

 Thus, if we have two populations 6x and 6, both of which are subject to the same system of
 rates A, or alternatively if 6x and 6, are two subdivisions of one population subject to A,
 we can calculate for each the total reproductive values Vx and V1, and determine the ratio

 R = Vx/lV. This quantity, as was shown at the beginning of the previous section, is the ratio
 at time t, when t becomes very great, of the total number of individuals in the two populations

 which at t = 0 had the age distributions 6x and 6,. But the quantity R cannot be interpreted
 in this way when the two populations are not subject to the same system of rates.
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 Again, if a population happens to have a stable form of age distribution 6a' then
 V - ?16a = a, the length of the vector 6a and this figure represents the total present value
 of the stable population 6a But, apart from the case when an arbitrary 6. is of the stable
 form, it is difficult to define the meaning of V simply by itself in any precise biological terms.

 From the mathematical point of view, when an arbitrary 6x is expanded in terms of the
 stable 6, and 6X = cl 61 + C2 62 + * * * + Ck+1 6k.l.

 k+1

 we have Yxx 6-= eaCa)
 a== 1

 which is the same thing as x2, the square of the length of the vector x. Then it can be seen that

 since V -l x = cl = x cos OX, the calculation of Fisher's total reproductive value is essen-
 tially the determination of one component of a set of mutually orthogonal sums of squares

 which together make up the total sum of squares represented by x2. Thus P2 = cl which is

 the first term in qx x = E eaCa, since cl is necessarily a real positive number.
 a

 The two methods of valuation which have been mentioned here are the calculation of the

 length of the vector 6x representing the age distribution of the population, and the calcula-
 tion of the total reproductive value V. Which of these two figures is the more important

 from the point of view of assessing the state of a population subject to a given system of

 fertility and mortality rates is a matter for discussion and further investigation. Certainly

 the total reproductive value V is a figure which is the more easily determined. It requires

 only a knowledge of the row vector Yl associated with the dominant root of the matrix
 representing the given system of rates to which the population is subject. On the other hand
 the calculation of the length of the vector x, is much more complicated. For, in order to

 arrive at the associated vector lx - 6HGH, it is necessary to know the numerical values
 of the elements of the matrix G, and hence HGH, which in turn cannot be computed unless
 all the latent roots of the matrix A are known. Thus, purely from the practical point of view,

 the calculation of the total reproductive value V = Yi1 6x offers a number of advantages and,
 within the limitations set out above, this figure may prove useful in comparing one popula-

 tion with another.

 It is perhaps worth mentioning in passing one further type of problem. If the length of

 the vector 6x is regarded as the present value of the population when it is subject to a particular
 system of fertility and mortality rates, it may be of interest on occasion to consider the

 maximum or minimum of the quadratic form 6'HGH6 given one or more restrictive con-
 ditions. Thus, for example, we might consider the problem of determining the column vector

 6 which would give rise to the minimum total value when the sum of its elements was equal
 to a number N. If nx (x = 0, 1, 2, ..., k) are the elements of 6S and the symbol {1} represents
 a column vector of (ki 1) units, we have, after differentiating with respect to the nx and
 introducing a Lagrange multiplier A,

 HGH6s-A{1} = 0,

 EnX = N,

 a set of (k + 2) equations for determining the values of nx which will make the length of the

 vector 6S a minimum subject to the restrictive condition imposed. It will be seen from these
 equations that the solution of this problem is equivalent to that of determining the column

 vector 6 which will have all the elements of its associated row vector ys the same value.
 Thus, by reversing the process, and starting with an arbitrary row vector of (k + 1) units, it
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 follows that the required column vector is proportional to the sums of the columns of the

 matrix H-lG-lH-l. As an example of the type of vector which has the minimum value, the
 solution of these equations in the case of the simple 4 x 4 matrix given in the introduction

 was for N = 108, = {84.5686, 17*4054, 4'5059, 1.5201},

 whereas the stable population of 108 individuals was

 61 = {81, 21, 5, 1}.
 This problem has been considered here in terms of the vector of shortest length, without

 imposing the full restrictive conditions which strictly speaking would be necessary when

 considering a population of living individuals, namely that the elements n. of the column
 vector are positive integers with En. = N. But the vector e in this example consists of
 positive elements and may be taken as representing, in the case of this numerical system,

 the type of proportionate age distribution which would give rise to the minimum value.

 Actually the difference between the two distributions 6s and 6, is not very marked in this
 example. The square of the length of the stable vector is 68, while that of the vector of

 shortest length is 64-4. But that this difference between the total values does correspond to
 a difference between the properties of the two age distributions may be seen by operating

 on each of them with the matrix A and determining the total number of individuals in the

 two populations at successive intervals of time. The numbers in the population which starts

 with an age distribution 6S will always be lower than those in the population starting with the
 stable form 61, until ultimately there would be about 5-3 % fewer individuals in the former
 than in the latter.

 5. THE LIMITED TYPE OF POPULATION GROWTH

 Hitherto it has been assumed that the system of age-specific fertility and mortality rates

 represented by the matrix A remains constant, and that therefore the population increases

 geometrically to an unlimited extent at a rate dN/dt = rN, when the stable age distribution

 is established. The next case which is usually considered in population mathematics is that

 of the logistic population, where the rate of increase in numbers is defined by the differential

 equation dN

 dt

 r and a being constants > 0, from which the well-known result follows that such a population
 will approach asymptotically an upper limit to the numbers given by K = r/a, according
 to the equation K

 1 + Ce-ri

 It is therefore of interest to consider in terms of matrices and vectors the type of population
 growth in which the system of rates is dependent on the number of individuals present in
 the population at a given time.

 Suppose that the system of rates to which a population is exposed when no limitations
 are placed upon the growth in numbers is represented by the matrix A with a dominant

 latent root Al. This might be called the optimum system of rates for the particular species
 or genetic stock. When the population is increasing in a limited environment let us suppose
 that at time t there is an age distribution 6,(t) consisting of a total number N(t) of individuals,

 and that at this time the elements of A are altered so that we have a new matrix Ai with a
 dominant latent root Al/q(t), where q(t) is dependent on N(t). Then the age distribution of
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 the population at time t + 1 will be given by At16(t) = 6(t + 1), and the process can be obviously
 extended so that at time t + 1 we have a matrix At1l with a dominant root Al/q(t + 1), q(t + 1)
 depending on N(t + 1), and so on. At eaTch integral value of t, therefore, the original inherent

 rate of increase r loge Al will in general change to a new rate r' = loge (Al/q), where q is
 some function of N, the number of individuals present in the population.

 The changes which are thus assumed to occur in the optimum age-specific rates of fertility

 and mortality represented by the matrix A might take place in an innumerable variety of

 different ways. But, from the theoretical point of view, there are two extreme cases which

 are particularly of interest; on the one hand, when the decrease in the optimum rate of

 increase is due to a lowered degree of fertility, while the age-specific death-rates remain the

 same: and on the other when it is due to an increased rate of mortality and fertility remains

 constant. Even under these simplified conditions it is necessary to make some assumption

 as to the way in which the rates are actually affected, and in order to define the problem in

 concrete terms, it will be assumed here that the changes which occur either in the degree of

 fertility or in that of mortality are due to the operation of a factor which is independent of

 age. In addition one further type of change in- the rates of fertility, involving a factor which

 increases geometrically with age, will be mentioned in passing. For simplicity the two main

 cases will be considered separately.

 (a) Mortality affected by a factor independent of age, fertility remaining constant

 If lx and m, are respectively the life table and fertility table for a population living under
 optimum conditions where no limitations are placed upon the growth in numbers, the

 inherent rate of increase (r) of the population is defined by

 fe-rxlxmxdx= 1,

 and the stable age distribution (cx) and the stable birth-rate (b) by

 C -be-rxlx, = fe,-rxlxdx.

 If now a force of mortality (y) which is independent of age is superimposed on the original

 force of mortality (,ux), represented by the optimum life table lx, the new life table lx will
 be given by 1 dl'

 lady (-y+4zx) or 1 = e-yxlx;
 and, if the original fertility table remains unaltered, the new inherent rate of increase will

 be r' = r - y. The stable age distribution (ci) and stable birth-rate (b') of the population when

 it is subject to this new life table will then be

 C b'elr'xl, = fe ' dxd;

 and it follows, since lx- e-yxlx and r' = r - y, that 1/b' = 1/b and c' = c,. The imposition
 of a force of mortality independent of age on a given life table thus leaves the original stable

 age distribution and stable birth-rate unchanged.

 Similarly in terms of matrices, if A is the matrix representing the age-specific rates of

 fertility and mortality for a population living under optimum conditions, we are led to

 consider the matrix q-1A in which each element of the original matrix A is divided by a

 scalar q. Approximately, in the discrete case, this is equivalent to imposing on the original
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 life table a force of mortality which is independent of age. Then in the reduction of q-lA to
 rational canonical form, if

 (PO P, 2 .. P, P k-1) qk ..... .
 (P, P2 ... Pk-1) q-(kl1) ...

 ... (Pk-2Pk-1) q-2 ,
 (P2k-) q1

 the first row of Bq = Hq(q-' ) H is

 - F?q-1' PO 1q ,Po P, F2 q , ,(oP2 . .. P_,1) Fk q-(~
 the remaining elements consisting in the usual way of a series of units in the principal

 *subdiagonal.

 The characteristic equation of the matrix Bq is

 A~+ - F0q lAk-PoF1q 2Ak 1 ...- (PoP1 ... Pk2)Fk1q P -(k+l) = 0

 while that of the original matrix B = HAH-1 is obtained by putting q = 1. Comparing these

 two equations term by term it will be seen that the latent roots of Bq are merely those of B

 each divided by the factor q. Thus, in terms of the canonical population, the stable age

 distribution appropriate to the dominant latent root Al/q of the matrix Bq may be taken as
 a multiple of the vector

 /1 k~) k-) AlX ()
 and since H =H l,

 = {(PPP2Ek_1) IA, (PIP2 k-I) 4 1, ..., (P)-1 Al, 1},

 which is the same as the 61 = H-1'Vr1 appropriate to the root A1 of the original matrix A.
 Moreover, since the time which it takes for an arbitrary 6, to approach the stable form of
 age distribution associated with the dominant root of the matrix will depend on the ratios

 of this root to the other roots of the matrix, as may be seen from the expansion of 6,(t) at
 time t in terms of the stable 6,

 6X(O = cl Al 61 + C2k? 2 62 +*.+ Ck+l Ak+l k+lX

 it follows that a population with any arbitrary form of age distribution which is subject to

 the matrix q-lA will approach the stable form at the same rate for all values of q. This

 result is of interest in the theoretical study of wild mammalian populations, since it might

 be assumed, at least as a first approximation, that any increase of mortality due to pre-

 dation, hunger, etc., falling on some optimum system of age-specific.death-rates could be
 represented by a factor which tended to be independent of age.

 If then we consider at time t a population with an age distribution 6(t) which is subject to
 the system of rates represented by the matrix q'A, and we regard q as some function of N,
 the number of individuals present in the population at time t, we might put as a first approxi-

 ination +,#N.

 For the stationary state we must have q = A1, the dominant latent root of the matrix A,

 Biometrika 35 'S
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 and in addition, as N tends to zero, q must approach 1. When the dominant latent root of
 q-'A is equal to unity, the condition for a stationary population,

 N A1-1 K
 (A 1)< -KN

 and therefore we may write q + (A1-1)2V
 K

 Then, assuming at time t there are N(t) individuals distributed as to age in the stable form of
 distribution (ga) for the matrix q-1A, which distribution is the same for all values of q as has

 been shown above, Al (t)
 q-lAga(t) = 6a(t + 1) = q a

 or N(t+ 1) Al N(t)
 1+ Al1-N(t)

 K

 and K-N(t? 1) = All (K -(t)}
 N(t + 1) 1 Nt

 which, as log, Al = r, is the same thing as the logistic type of population growth,

 N = K
 1 + Ce-rt

 Thus, when fertility remains constant and mortality is affected by a factor which is in-
 dependent of age, this factor being regarded as a simple linear function of the numbers
 present in the population at time t, the total number of individuals in the population will
 increase according to the logistic form of population growth, provided that the age dis-

 tribution of the population at t = 0 is the stable form appropriate to the dominant latent
 root of the matrix A. But, when this condition is not fulfilled, and the initial age distribution
 is not of the stable form, there may be quite considerable departures from the curve given by

 this actual logistic equation. The form of the curves representing the total number of
 individuals at successive intervals of time will, however, still tend to be S-shaped, and in some
 cases there is little doubt that a logistic type of equation could be fitted empirically to the
 data over a considerable portion of the total curve. The type of variation which might be

 expected in these growth curves owing to a departure from the stable form of age distribution
 is illustrated in the following simple examples.

 Suppose that an entirely imaginary population, which canbe considered in four age groups,
 is subject to the optimum system of rates of death and reproduction represented by the
 matrix defined originally in the introduction,

 -0 64286 18 181

 0-7778 0 0 0

 0 007143 0 0'

 L 0 0 0-6000 01

 which has a dominant root A, = 3, or r = 1-09861, and suppose that for the matrix q-'A,

 q = 1+0000185185N.

 where N is the number of individuals in the population at integral values'of time t. When
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 q = 3, the stationary state, N = 10800; and at t 0 let there be 108 individuals present in

 the population. These conditions are fulfilled by the logistic equation

 N_ 10800
 1 + 99e-1-os861t

 If at t = 0 we consider three different age distributions each consisting of 108 individuals
 and represented by the vectors

 a= {81, 21, 5, 1}, 8 = {85, 17, 4, 2}, , = {O, 0, 108, 0},

 where 6a is a stable age distribution of the matrix A, 6S the vector of shortest length given
 in the previous section and expressed to the nearest integer, and 6, a very skew form of age
 distribution in which all the individuals are concentrated in an age class for which fertility

 is high, the age distributions and therefore the total number in each population can be

 readily calculated by successive applications of the matrix q-4A. The following are the results

 obtained in each case, together with the values of N calculated from the logistic equation

 Values of N

 Initial age distribution
 From______ _

 t logistic

 0 108.0 108 108 108
 1 317 6 318 292 1970
 2 900.0 901 844 1930
 3 2314*3 2316 2215 6199
 4 4860 1 4862 4660 8423
 5 7673.7 7675 7540 9389
 6 9508*7 9509 9433 10694
 7 10332*3 10332 10298 10609
 8 10639*5 10641 10628 10741
 9 10745*9 10745 10742 10804
 10 10781*9 10781 10780 10781

 which are given in the first column. It will be seen that in the case of the stable age distribu-

 tion 6a the values of N follow those calculated from the logistic equation, apart from small
 discrepancies at times in the last figure due to errors of rounding off. (The elements of the

 vector 6(t + 1) = q-1A6(t) were in each case expressed to the nearest whole number.) In the
 case of 6s, an age distribution which does not differ very greatly from the stable form, the
 numbers lie below those for the initial distribution 6a until t = 10, the stable age distribution
 being approximately established in this population round about t = 7; while for 6 the num-
 bers are very erratic owing to the very skew form of the initial distribution leading to a very
 rapid increase in numbers during the early stages. The stable form of age distribution was

 approximately established in this last population at t = 10. It is evident from these examples

 that the initial form of age distribution may have a marked effect on the course of develop-

 ment followed by a population which inherently is increasing towards some upper limit
 according to the type of growth in numbers assumed here.

 The initial number of individuals in these three examples is small relative to the upper

 limit of K = 10800, so that even a thoroughly skew form of distribution such as 6x has time
 15-2
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 in which to approach the stable form of age distribution before the upper limit in numbers

 is achieved. Actually in the case of 6, the stable form is not established before t 10, and
 a tendency to overshoot the upper limit will be noticed before that time. If the initial number

 of individuals had been chosen much greater relative to K this tendency would only have

 been emphasized. An extreme case would have been to assume that the initial number of

 individuals in each of the three examples was equal to 10800. Then it is evident that whereas

 the population represented by ga' the stable form, would have remained constant at the

 same figure, those represented by 6s and 6x would vary on either side of the upper limit to
 begin with and would tend to approach the steady state by a series of damped oscillations

 as the stable age distribution was in the process of being established.

 (b) Fertility affected by a factor independent of age, mortality remaining constant

 This problem raises a number of difficulties not all of which have been satisfactorily

 resolved. But, before considering the main problem as defined here, namely when fertility

 is affected by a factor independent of age, there is another case which arises from the fore-

 going discussion, and which is perhaps worth mentioning. The canonical matrix

 Bq=Hq(q-'A) Hq'
 defined above, is when written in full, to take a simple example of a 4 x 4 matrix,

 r> PO~q-2 P0 P q l ~j
 -FOq-1 POl- ol2q-3 Po PP2E3 q-4
 1 0 0 0

 Bq 0 1 0 0 ;

 , 0 1 0

 and it can be seen that in addition to being the canonical form of q-1A, Bq is also the
 canonical form of

 [FOql lq-2 F2q-3 F3q-4

 Aq O1 0 0 01
 [0 Pi 0 0
 , O 0 P2 0

 the diagonal matrix H of the transformation HAqH-1 having elements hll = PoP1P2

 h22 = P, P2 h33 = P2, h44 = 1. This matrix Aq can be regarded as representing some system
 of age-specific rates in which an original level of fertility included in the Fx figures has been

 affected by a factor which increases geometrically with age, and as before this factor q might
 be taken as being linearly related to N, the number of individuals present in the population
 at time t. But in contradistinction to the matrix q-'A, the age distribution of a population
 subject to the matrix Aq will no longer remain stable. For suppose that in terms of the

 canonical population the stable age distribution associated with the dominant root Al/q
 of Aq is k k-l

 the transformation 61 = H-1?l gives

 = {(POPlP2.Pk -l) '(q) (PlPA...Pk l)(-1) ). Pkll(-)1 I),

 which is not the same as the 61 associated with the dominant root Al of the original matrix A.
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 If then at time t a population happened to have the stable form of age distribution appro-

 priate to the matrix Aq(t), it will not in general have the stable form of distribution at t + 1

 appropriate to Aq(t + 1), except in the case of the stationary population with N = K and

 A1/q = 1, when the life table age distribution is established.
 By extending this argument for the matrix Aq to the perfectly general case, it can be seen

 that the age structure of a population will be constantly changing when the degree of fer-

 tility is affected and the life table remains constant, until in the terminal stages of its growth

 the population approaches the stationary state. This is, of course, essentially the same type

 of changing age distribution as that shown to occur by Lotka (1931) in the case of a popula-

 tion growing in numbers according to the logistic law with a constant form of life table.

 A numerical example is given later of a population subject to the matrix Aq when q is taken

 as a simple linear function of N.

 Although, biologically speaking, it is not impossible for fertility to be affected by a factor

 which increases geometrically with age and which depends on the number of individuals

 present in the population at a given time, it is perhaps of greater interest to consider the

 case in which the fractional decrease in fertility is the same at all ages. In other words, it is

 necessary to consider the matrix A,, say, in which the elements in the first row of a matrix
 A representing the optimum rates of death and reproduction are each divided by a factor 8,

 so that A F=-[ Flj-l F281 ... Fk8 1]

 PO ~ ~ As= P, .

 _ . * * ~~k-1*_

 Now, if the (x + 1 )th element in the first row of the canonical form B = HAH-1 is written as

 (PO P1P2 .. Px-lFx) = fx~

 the characteristic equation of the original matrix A is

 Ak+1 (E fXAkx) =?
 x=O

 and that of the matrix A8 is Ak+1 - -1 ( fxAk-x) =
 x=O

 If the real positive root of the first equation is Al, the real positive root of the second can
 be written as A1/q, and the inherent rate of increase of a population subject to the system of
 rates A8 will be r' = loge (A1/q). Since we are considering as before the case when q is a function
 of N, say A-1

 q= 1+ K N.

 it is necessary, in order to solve the problem of a population in which fertility is affected by

 a factor independent of age, that 8 should be expressed as a function of q.

 This point proved to be rather troublesome, and the following solution needs a much fuller

 investigation than it has received here. It depends on the relation between the first row of

 the canonical form B = HAH-1 and the Lxmx column which was touched on in the previous
 paper (Leslie, 1945, ? 6). It is evident that the division of the elements in the first row of the
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 matrix A or B by a scalar s is the same thing as dividing the maternal frequency figures

 (mt,) by the same quantity. The original net reproduction rate, RO = lxmndx, will therefore

 become Ro/s. Now, in the solution of the equation

 e-rxlxmxdx=1,

 we have logRO = mlr-m2 r2+3r _m4 -32 (5.1)

 where ml= xlxmxdx/f lxmxdx,

 and mn. (n = 2, 3, 4, ..., n) is the nth moment about this mean. When the maternal frequency
 is divided by s the moments of the distribution will not be affected, but the value of r will

 change to a new value r', and

 loge (Ro/s) = ml r'-2 r'2 + Ad'3 _ 4- 3m r'4+.... (5.2)

 The moments are usually calculated by treating the Lxmx figures (Lz = f x l~dx) as a

 frequency distribution, the individual frequencies being regarded as centered at the mid-

 point of each age group. Alternatively they are sometimes calculated from lxmx, where lx is
 the value of the usual life table function taken at each midpoint. When a system of rates is

 expressed in the form of a matrix the elements of the first row of the canonical form

 B = HAH-1 are not the same as the Lxmx figures. But it was found (Leslie, 194.5, ? 6) that
 the sum of these elements was equal to the net reproduction rate and that if each element

 (PO P1 P2 ... PxIl4 x) was regarded as centered at the age of x + 1, the mean and semiinvariants
 of the distribution were the same as those obtained from the Lxmx column.

 These relationships suggested a possible way of relating s to q. If for the matrix A, with

 a dominant latent root Al = et, the sum of the elements in the first row of B = HAH-1 is

 equal to Ro, and if the dominant latent root of the matrix A, is Al/q = er', we might, as a
 first approximation, take only the first terms in each of the equations (5 1) and (5.2), and put

 loge RO = ml r, log, (Rols) = mlr,

 ri
 and~~~~~~~~ -log, R0 = log, R/)

 r- log, q or, since --1- ,
 r r

 logs- log, Rlogq. (5.3)
 r

 For a greater degree of accuracy the first two terms could be taken as (5.1) and (5 2), viz.

 log R0 = mlr- M2-r2, log,(Ro/s) = mlr'- 2 r;2 and -{1 + 2 8 logeR = loge l 2

 and - (+ ~)log, R0 = log, (Ro/s).
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 From which, putting loge q = w and m r = c

 loge~ S=_ rge {(rc) WW2}. (5.4)

 For a greater degree of accuracy still, further terms on the right-hand side of (5.1) and (5 2)
 could be included, though the algebra tends to become somewhat tedious. Presumably the

 number of terms which it would be necessary to include in any particular case would depend

 on the magnitude of r and upon the form of the distribution relating net fertility to age.

 Actually in the elementary numerical example which has been used here so far, equation

 (5.4) appears to be fairly accurate. Thus the characteristic equation of A with Al = 3 and
 RO= 21 is A4-5A2_-OA-6= 0.
 Dividing these numerical coefficients by 8 = 5, for example,

 A4-A2- 2A-1*2 = 0,

 of which the real positive root is Aj/q = 1P63476, or q = 1*83513. The values of m1 and m2
 were 3*04762 and 052154 respectively, and equation (5 4) was in common logarithms

 log s = 2-48366 log q + 0-60263 (log q)2. (5.5)

 For q = 1*835, the estimated value of 8 is 4 975, whereas the true value is s = 5. If 8 is

 estimated from equation (5.3) for q = 1*835 the value is 5*379, so that the second degree

 equation in log q is an improvement on the first and gives a reasonably close approximation

 to s for values lying in this region. It will be noted that if q = 3, 8 = 21 from this second

 degree equation (5.5), as it should do.

 In order to compare the operational effect of the matrix A, with that already determined
 for q-1A, two examples are given below for the initial age distributions

 a= {81, 21, 5, 1}, x = {O, 0, 108, 0},
 6a being the stable age distribution of 108 individuals for the matrix A, and 6x the same form
 of skew distribution used previously. As before, q was taken as

 q = 1 + 0000185185N,

 and the appropriate value of 8 at each stage was calculated by means of equation (5.5). In
 addition one example is given of the operation of the matrix Aq in which fertility is affected

 by a factor which increases geometrically with age, taking 6a as the initial distribution. The
 results were as follows: Values of N

 Matrix A8

 t From Matrix AQ .
 logistic 6

 0 108.0 108 108 108
 1 317 6 312 312 1915
 2 900.0 867 867 1976
 3 2314*3 2118 2115 5603
 4 4860.1 4194 4120 7315
 5 7673.7 6659 6393 8616
 6 9508 7 8857 8362 10464
 7 10332*3 10268 9696 10369
 8 10639.5 10876 10384 10695
 9 10745.9 10984 10673 10901
 10 10781-9 10900 10766 10715
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 Comparing the two cases in which the initial distribution was of the stable form 6a with the
 figures derived from the logistic curve, it will be seen that in both cases the numbers of

 individuals are less than those for the logistic particularly in the early stages of development.

 Broadly speaking, however, all these three curves are similar in their general outlines, though

 there is an obvious tendency in the case of the matrix Aq for the population to overshoot the

 upper limit of N = 10800 in the later stages. Similarly, in the case of the initial distribution

 6 and the matrix A., the course of events is not very different from that for the previous
 example with this distribution, when it was assumed that mortality was changing and

 fertility remained constant, though, again here, the numbers of individuals are less when

 fertility is changing and mortality remains the same. The chief difference between these

 examples and those given previously lies, of course, in the forms of the age distribution.

 When the matrix q-1A was assumed to be in operation, the ultimate age distribution to
 which all populations would tend, whatever their initial conditions and numbers might be,

 was 6= {8100, 2100, 500, 100};

 whereas, both for the matrix Aq and AS, the stationary age distribution of 10800 individuals is

 6= {4050, 3150, 2250, 1350};
 and throughout the whole course of development of each population an approach is being

 made to one or other of these very different distributions.

 Although the two extreme cases of either fertility or mortality changing through the

 operation of a factor which is independent of age have been considered here separately,
 there should be little difficulty in extending the methods so as to include the case where both

 fertility and mortality are affected in varying degrees at the same time. Thus, we might

 consider the scalar q of the dominant latent root A1/q at time t as being the product, q = uv,
 of two factors, one of which, u say, represents an increase in mortality independent of age,
 and the other v represents the effect of a decrease in fertility at all ages by means of the

 factor s. Various possibilities then arise, depending on whether the ratio u/v was regarded
 as a constant, or as varying in some predetermined manner. However, these questions have

 not been gone into any further at present.

 It will be noticed that the problem considered in this section of a growing population

 subject to a changing degree of fertility and a constant life table is not precisely the same as
 that discussed by Lotka (1931). In the first part of that paper Lotka showed how the birth-
 rate, death-rate, age distribution and inherent rate of increase of such a population would

 change when the total number of individuals in the population increased according to the

 logistic law. Here no assumption is made as to the way in which the number of individuals

 is increasing, but it is assumed that at equal intervals of time, which intervals in practice

 can be made as small as we please according to the degree of accuracy required, the inherent

 rate of increase of the population r' = loge (A1/q) is dependent on the number of individuals
 (N) present at time t, and, as a first approximation, q has been taken as a linear function of N.

 The most important feature of this form of population growth is the marked effect which the

 initial age distribution and numbers have on the subsequent course of development of the

 population. Only in one case, namely when mortality is increased owing to the operation

 of a factor independent of age, fertility remaining constant, and when the initial age dis-
 tribution is of the stable form appropriate to the matrix A, is the true logistic form of growth
 in numbers realized. However, the result of operating on a not too abnormal initial dis-

 tribution with either of the matrices q-1A, Aq or A. is, broadly speaking, a very similar type
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 of S-shaped curve, if the initial numbers are small relative to the upper limit K, and in some
 cases there is little doubt that a logistic equation could be fitted empirically to such a series

 of points, more particularly when the figures for the total number of individuals are not

 available over the complete range of development of the population. But, in general, we
 shall have for a given matrix A and a given value of K in the equation q = 1 + (Al -1) N/K,
 a family of S-shaped or partially S-shaped curves (or even the type of curve which descends

 towards the upper limit K), the differences between the individual members depending on
 the initial state of the population and on the way in which the decrease in the inherent rate

 of increase takes place, whether through a decrease in fertility, or an increase in mortality,
 or a combination in varying degrees of both factors. Among the more interesting features
 of this type of population growth is the possibility, under suitable initial conditions,
 of the total numbers in the population becoming greater than K and then of finally
 approaching the stationary state by means of a series of damped oscillations around
 this limit.

 It is interesting to consider in the light of these results some of the population growth curves
 which have been published for one or other species of insect living alone in a limited environ-
 ment (e.g. Chapman, 1928; Crombie, 1945). Certainly the initial age distribution of some of

 these populations must have been extremely skew, consisting as they did in many cases of
 only a small number, perhaps only a pair, of adults. It is a little difficult, on looking through
 the figures given in these various papers, to rid oneself of the impression that some of the
 curves may have been influenced, in part at least, by these rather extreme initial conditions.
 But at present this remains an impression and nothing more; it does suggest, however, that
 the part played by the initial age distribution is worth investigating further in these experi-
 mental populations.

 Although the dominant latent root of the matrix operating between t and t + 1 has been

 considered here only as a function of the number of individuals present at time t, there should
 be little difficulty in extending the argument so as to include the case when q is assumed to

 be a function not of N(t) but of N(t -a) where a is an integer, or even of an integral, j'Ndt

 say. This last would be equivalent to assuming that the growth of the population was defined
 by a type of integro-differential equation such as is introduced by Volterra in his development

 of population mathematics (e.g. Volterra, 1931, p. 141; Volterra & D'Ancona, 1935, p. 22).
 Moreover, there is another and more speculative approach which is not without interest. In
 all these various forms of population growth the inherent rate of increase is regarded as
 dependent on the total numbers and thus each individual is counted as being of the same
 value for all age distributions of which it is a member. In other words, the factor q is taken
 to be some function of the scalar [1] 6, where [1] is a row vector of units. Now, from the
 biological point of view, it is not unreasonable to suppose that the form of the age distribution
 may also be of importance. For a given value of N we might have two entirely different age
 distributions, one of which was composed largely of adult individuals and only a small
 number of young, and the other with these proportions reversed. The question naturally

 arises whether one is justified in assuming that both the populations are of equal value and
 that they both influence the system of rates to the same extent. The one with the larger

 proportion of adults might exert a greater degree of influence on the rate of increase owing,
 for instance, to a proportionately greater consumption of food, or an enhanced mutual
 interference between the individual members of the population. But this is at present purely
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 speculative, and so far as the writer is aware, there is no experimental evidence for the

 occurrence of such differential effects associated with the form of the age distribution when

 the populations are of the same size. As a possibility, however, it is of interest theoretically

 and it suggests that instead of counting all individuals as equal, some system of weighting the

 individual age classes would be required. A mathematical model which immediately comes

 to mind is that of a matrix whose dominant latent root is affected by the length of the vector

 on which it is operating; that is to say, it would be assumed that the inherent rate of increase

 was dependent on the present value of the population at a given time.

 6. THE PREDATOR-PREY RELATIONSHIP BETWEEN TWO POPULATIONS

 It is of interest to consider very briefly a simple type of predator-prey relationship between

 two species of which the one, S1, is preyed upon by the other, S2. If the matrix A1 with a
 dominant latent root Al represents the optimum system of rates for the prey and the matrix

 Al, for this population at time t has a dominant root Al/ql, we might regard the factor q1 as
 a function of N2, the number of the predatory species S2, and write as a first approximation,

 q1= I+acN2, (6.1)

 where a, > 0 is a constant. In the same way there will be some optimum system of rates A2
 for the species S2, though in fact this system may never be realized in full save under excep-

 tional circumstances, for instance when the prey are extremely numerous in comparison

 with the predator, and everything in the environment is favourable to the latter species.

 (From the biological point of view there must be some upper limit to the possible inherent

 rate of increase of which a particular species is capable. For instance, in the case of mammals,

 this limit will be determined in part by physiological factors, such as the length of the

 gestation period, the shortest interval between litters, the maximum average number of

 daughters per litter, the age at which breeding first starts, and so forth, as well as the form

 of life table under the most favourable circumstances.) Then at time t the matrix A2,
 will have a dominant root A2/q2 and we will write

 q2 1+a2 2 (6.2)

 where x2 > 0 is another constant and N1 the number of the species S, at time t. This equation
 expresses in a simple fashion the main biological consequences to the species S2 of its depend-

 ence upon S1 as a source of food. For when N1 -O0, q2-* oo, and the inherent rate of increase
 of the predator r2 = loge (A2/q2) -* - oo (disappearance of predator in the absence of any
 prey). Conversely, when N1 becomes very large, q2 --1 and the inherent rate of increase of
 the predator approaches its optimum value r2 = loge A2.

 Adopting, then, the simple system represented by (6.1) and (6.2) we shall have for the
 stationary state, putting q1 = A1 and q2 A2,

 o1= (Al - 1) = N= 1 =K

 which will be real positive quantities when both Al and A2 > 1. Moreover, assuming for the
 moment that a stable stationary state is possible, we must have oc2(Al - 1) > Cs1(A2 -1) and
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 (A1 - 1) > a, for both species to coexist in appreciable numbers. Then, expressing ax, and ?x2
 in terms of the A's and K's, X

 q1= I+(Al-1) K2 (6.1a)

 2= + (A2-1) KN2. (6.2a)

 This simple system, however, can be improved upon to some extent. It will be noticed that

 if in equation (6. 1) N2 = 0, q1 = 1 and thus in the absence of the predator it is assumed that

 the prey will increase to an unlimited extent. In order to introduce the conception of a
 limited environment, we might put

 q1 = 1 +aL1N2+,/3Nl, (6 3)
 so that when N2 = 0, the species S, will approach some upper limit in numbers. A slightly
 more general system is represented then by equations (6.3) and (6.2), for which the stationary

 state is N= a2(Al-1) N - (A1-1) (A2-1)
 a~l(A2 - 1) + 0C2418 2 al(A2 - 1) + a2A'

 It would thus be possible to examine the consequences of various hypotheses as to the

 way in which the reduction in the optimum inherent rates of increase for the two species are
 effected. The possible combinations are, however, so numerous that it is difficult to cover at

 all adequately any more than one of the most obvious cases. In order to illustrate the pro-
 perties of such a system, the simplest, and also the possibly not unrealistic example of the
 reduction in the rates for both species taking place through the operation of an additional

 force of mortality independent of age will be considered here. That is to say, it will be assumed
 that the effect of the species S2 on system of rates for the species S1 will be to divide the

 elements of the matrix A1 by the factor ql, and similarly that the effect of the species S, on the
 species S2 and the matrix A2 will be to divide the elements of the latter by q2. This simplifies
 a number of the actual computations and also the analysis of the properties of the equations.

 If at time t the age distributions of the N1(t) and N2(t) individuals of the species S. and S2
 are of the stable forms appropriate to the dominant latent roots A1 and A2 of the matrices

 A1 and A2 respectively, then from the properties of a matrix q-lA which were discussed in
 the previous section, the two populations will retain their initial forms of age distribution

 unchanged. The total numbers of individuals in the two populations, supposing these are
 subject to the system defined by equations (6.1 a) and (6.2 a) respectively, will therefore be

 at time t+ I Nl(t+ 1) = N\(t)

 N2(t+ 1) = A N2((t)
 1 + (A2- 1

 (A1 l)(t) (1 K N(t)
 whence (A1t-1) - (tt(1)

 K2

 and N2(t+1)-N2(t)= ~~(A2- 1) N2(t) (1 - K l$2gt}

 1 +(A2 1K2N(t)
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 Before discussing the limits to which these difference equations will tend when the time

 interval is made smaller and smaller, it is necessary to consider the question of the value to

 which the dominant latent root of the matrix will tend when the latter becomes of a very

 large order. Suppose that working in some convenient unit of age and time we have the

 matrix Al, with a real positive root Al, representing some given system of age-specific
 fertility and mortality rates. We can also construct a new matrix-Ai say-for the same
 system of rates when the time interval is taken to be a half-unit. This new matrix will be

 twice the order of the original one and it will have a dominant root-Ai say-which will be
 less than Al. Continuing the process further, we shall have for an interval of age and time h
 a matrix Ah with a dominant root Ah, this root representing in the case of a population with
 a stable age distribution, the ratio N(t + h)/N(t). In order to compare the successive values

 of Ah which would be obtained by making the interval h smaller and smaller, it is necessary
 to express them in some common unit of time and we can write

 A = (Ah)1/hb or Ah = Ah.

 Then, when the matrix remains constant in time, we shall have for a population with a

 stable age distribution,

 N(t + h) -N(t) =Ah-1Nt A h - i

 or, when h- 0, dN = (logA) N,
 dt

 Ah -1
 since lin = loge A.

 h-AO h

 Thus, as the matrix is made larger and larger, the value of loge A tends to p, the true instan-

 taneous relative rate of increase of the stable population per unit of time.

 In a similar fashion we may write for an interval h the above difference equations in the

 form hA 1\( N2(t))

 N1(t +h) -N1(t) _ ~ K2 J
 _ =

 1 + (Ah-1 2(t)

 N2(t + h)-N2(t) h(Ah) 2(t) (1 K2N (t)}

 (A 2 1)K2N2(t)

 which, as h 0, may be replaced by

 dN, ( AN1 N\ dN2, A Nl
 dd-1= (log, Al) N1( 1K),d2 2 (log, A2 N2(-

 Thus, when the age distributions of the populations S1 and S2 are each initially of the appro-
 priate stable form, and when it is assumed that their respective systems of rates are repre-

 sented by the matrices qjj'Al and q2-A2, the system of interrelations between the two
 populations which is defined by

 N2
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 is equivalent to that defined by the differential equations

 dAt1 = (r-aN2)N dt2 = (r2-a2 Y-)N2, (6 4)
 dt cit 2 2N 2

 or, when q1 is defined by (6.3), to

 dN1 = (r1-a1N2-b1N1) N1 - = 2-a\2N (6 5)
 dt d~~~~ct r2-a2f)N2~ 65

 where in both sets r, = loge Al, r2 = loge A2 and a1, a2, b, are constants > 0. This result is
 analogous to that discussed in the previous section for a single population increasing in a
 limited environment, where it was shown that when mortality was affected by a factor

 independent of age and the initial distribution was of the appropriate stable form, the

 numbers of individuals increased according to the logistic law, and that consequently under

 these conditions the type of population growth resulting from the operation of the matrix

 q-1A, where A=1-

 q =I+K N
 was equivalent to that defined by the differential equation,

 dN = (r-aN)N.
 cit

 The system of equations (6.4) differs somewhat from the classical Lotka-Volterra equations
 (Lotka, 1925, Chap. 8; Volterra, 1931, p. 14) for a simple predator-prey relationship between
 two species, in which the second member would be written

 dN2 _ (-r2+ a2N) N2
 cit

 The form of the second member in (6.4) was originally suggested by the results of an analysis
 made by the author (unpublished observations) of some data given by Gause (1934) for the
 growth in numbers of Paramecium caudatum and Paramecium aurelia cultures, in which the
 food supply consisted of a suspension of Bacillus pyocyaneus in a buffered medium. Two

 different concentrations of bacteria-called by Gause 'one loop' and 'half-loop'-were
 used for both species of Paramecium, and under the conditions of the experiments these
 populations could be regarded as living in a limited environment with a constant supply of
 food. It was apparent from the results that for each species living alone the upper limit to
 the number of individuals depended on the concentration of food, being in each case approxi-
 mately twice as great in the cultures with the 'one loop' concentration as in those with the

 'half-loop'. If logistic equations are fitted to the four series of data given by Gause (1934,
 table 4, p. 145), it will be found that whereas the constant r in the equation dN/dt = (r - aN) N
 remains approximately the same in the pair of experiments on each species of Paramecium,
 the constant a is inversely proportional to the concentration of food (see also on this point
 Kostitzin, 1937, p. 77). Thus, when the food supply (F) was kept constant, the form of
 population growth in numbers could be written

 dF0 dN, ( a

 dd7Ft ' d= r2 C 22)

 where C represents the relative concentration of food in the different experiments. This
 relationship suggested a system of equations such as (6.4) for the theoretical case of a food
 supply consisting of a population of individuals which when living alone would increase at
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 a rate dN,/dt = rlN,. However, apart from these considerations, the form of the second
 member of (6.4) is linked with the type of expression used here to define q2 in terms of NJ
 and N2, and the latter arose as one of the simplest and most obvious ways of expressing the

 dependence of the species S2 on S1, bearing in mind that the elements of the matrix repre-
 senting the system of rates at a given time must be positive quantities (F >, 0, 0 < Pa < 1).
 The difficulties which arise when this is not the case will be appreciated on endeavouring

 to find a working model in terms of matrices and vectors which will reduce to the classic

 Lotka-Volterra equations under suitable initial conditions. For, in the case of the predatory

 species S2 we should have to consider a reciprocal matrix A- 1 with a real positive root A -',

 and at time t the matrix q2A l would be regarded as operating on the vector 6(t) representing
 the age distribution of S2. Then, if as before the matrix q1 'Al represents the system of rates
 for the species S, and

 q, =I1+ N2, q2 =1 + K N
 K2 K1

 we have a system which will reduce to the Lotka-Volterra differential equations when the

 initial age distributions of both populations are of the stable form appropriate to their

 respective matrices A, and A2. Now, apart from the fact that here no upper limit is placed
 on the inherent rate of increase, r4 = loge (q2/A2), of the species S2, there is an added complica-
 tion that a number of the elements of A- 1 will be negative (for the form of the matrix A-'

 see the previous paper, ? 4). Although no difficulties arise in the special case, when the age

 distribution of S2 is of the stable form, in the perfectly general case of an arbitrary 6(t) some

 of the elements of 6(t + 1) = q2Aj 6(t) can become negative and thus meaningless from the
 biological point of view. For these various reasons, therefore, the form of interrelationship

 between the two species defined by equations (6.1 a) and (6 2a) was adopted here as a working

 model, and these reduce in the special case to the system of differential equations (6 4).

 The writer has to confess that he has been unable to integrate either of the sets (6 4) and

 (6.5). Their main properties, however, seem to be quite clear. Taking the simplest system

 (6.4) first, we have for dN,/dt = dN2/dt = 0,

 r a, ~~~r
 N, = 1 2 Ki, N2 = a = K2

 r2al a,

 and, introducing for simplicity the variables n, = N1/Kl, n2 = N21K2

 dn= rlnl(-n2), dn-2 n12 \ _ 2
 dt dt 1nn, d

 We will suppose that we are dealing with the case when rla2 > r2a,, r1 > a,, in order that
 the stationary state may have a real meaning from the biological point of view. Then, in

 considering small departures from the stationary state, let v, = nA - 1, v2= n2 -1; and,

 disregarding in the usual way terms such as VlV2, V12, etc.;

 dv,= rl 2 dv2
 d =-rlV2, dt = r2v,-r2 V2.

 This linear system will have a solution of the type v, = Al e/t + B, e_/2t, V2 = A2 eIlt + B2 e/l2f,

 where the values of #A will be given by the roots of the characteristic determinant

 -it - r1 _
 r2 -(r2+) 0

 or 2/t =-r2 ?J(r2-4rr2).
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 Thus, both roots jIt and t2 will be complex so long as r2 < 4r,, and the real part of this pair
 will be negative since r2> 0. The system under these conditions will therefore approach the

 stationary state by a series of damped oscillations. When r2> 4r,, both It, and Jt2 will be
 negative; and consequently the stationary state will be stable, since in both cases v1 and v2
 tend to zero as time increases.

 The analysis of the system represented by equations (6.5) leads to very similar results.

 For dNl dN2 -
 dt dt -

 N- = r1a2 -K1, N2= 1r2 -K2.

 And, in the same way as before, putting n1 = N1/K1, n2= N2/K2, v1= n1-1, v2= n2 -1,
 and neglecting terms in vlv2, etc., we have

 dv1 dV2
 d= 1 r1(lo) v- 2' dt2 = r2vl-r2V2,

 where k= (l a1) (O<k<1).

 Then, putting the characteristic determinant

 -{rl(L-k)?+a} -r1k 0=
 r2 -(r2?+t)

 we have t2 +?{r12+ r(1 -k)}JI + rlr2k = O.
 The roots of this equation will be either both negative or both complex with the real

 part negative, depending on the relation between the various constants, and consequently
 both vl and v2 will tend to zero as time goes on, the stationary state thus being stable as

 before. It will be noticed, however, that if It = u + iv, the damping term represented by the
 real part, u = - {r2 + r1(1 - k)}, will be greater than in the case of the first system of equations
 (6 .4) where u =-r2. Again, for a given set of values of rl, r2, al, a2, the number of individuals
 N1 = K1, N2= K2 must be less for the second set of equations than for the first, since by

 definition b, > 0. Thus we might expect that for a population subject to equations (6.5) the
 stationary numbers will be lower and the approach to the stationary state more rapid than
 for a population subject to equations (6.4), provided that the values of rl, r2, a, and a2 are
 the same in both cases.

 As a numerical example of these predator-prey equations, suppose that the optimum
 system of rates for two imaginary species were the same and that they were represented by
 the matrix A which has been used previously to illustrate various points. Then Al = A2,

 Al = A2 = 3 and rl = r2 = 1-09861. If, for the first set of equations (641) and (6.2) we put

 q, = 1+ 0.002N2, (6*6)
 q2= 1?+0N2/N1 (6.7)

 and for the second, (6.3) and (6.2)

 q1 = 1+ 0.002N2?+ 0000185185N1, (6.8)

 q2 remaining as before, the number of individuals for the stationary state are in the first case
 K1= 5000, K2= 1000, and in the second K1 = 3418, K2= 684. Then, assuming that at
 t = 0, N1 = N2= 108, and that each of these populations had the same stable form of age

 distribution 61 = {81, 21, 5, 1},
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 the results of operating on these two age distributions with the matrices q-jA1 and q-jA2
 were as follows for the two sets of equations. The first two columns give the numbers of

 prey (N,) and predators (AT2) when no upper limit is placed on the number of prey (equations
 (6'6) and (6.7)), and the second two columns give the respective numbers when the upper
 limit to N1 would be 10800 individuals, if the predatory species was absent (equations (6-8)
 and (6.7)). (This is the same logistic population as was used in the previous section as an
 illustration.)

 t ~ N, N2 N, N2
 0 108 108 108 108
 1 ~~266 30 262 30

 2 755 42 710 42
 3 2089 81 1754 79
 4 5393 175 3550 163
 5 11983 396 5371 335
 6 20050 894 6046 619
 7 21583 1854 5403 917
 8 13756 2991 4227 1020
 9 5910 2826 3317 897
 10 2665 1466 2921 726
 11 2033 677 2928 625
 12 2592 469 3146 598
 13 4012 501 3396 618
 14 6011 668 3555 658
 15 77179 949 3587 692
 16 7986 1277 3529 709
 17 6741 1474
 18 5122 1388
 19 4071 1122
 20 3763 896
 21 4043 795
 22 4684 804

 In both cases the approach to the stationary state by means of a series of damped oscilla-
 tions is very evident, this approach being made more rapidly in the second series than in the
 first as was to be expected from the results of the foregoing analysis. Probably the clearest
 graphical illustration of these functions is obtained by plotting log N2 against log N1, the
 result being a spiral curve which gradually approaches the stationary point.
 Although these predator-prey equations have been studied here only in the special case
 of the reduction in the rates of increase of the two populations being effected by an increase
 in the degree of mortality which is independent of age, there would be little difficulty in
 investigating, for instance, the type of case in which a relative absence of prey affected the
 fertility of the predator, and so forth. Moreover, there will be in all cases the effect on such
 a system of any abnormalities in the initial age distributions, or of any chance disturbances
 of the existing age distributions at some point in the development of the populations.
 Without working out any actual examples, however, it might be expected from the results
 obtained in the case of a logistic-type population that the general effect of all these factors
 would be to add further oscillatory features to those which already are inherent in the system
 itself, even when the stability of the age-distributions is established as in the above numerical
 examples. It seems likely, too, that these additional factors will increase the chance of one
 or other of the two species being reduced to such low numbers as would be equivalent in

 practice to the extinction of the population. This possibility will, however, greatly depend
 on the numerical relations between the various constants which enter into the equations
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 and upon the initial conditions of the particular system. Finally, just as in the case of a

 solitary population increasing in a limited environment, there is the possibility of studying

 the more complicated cases in which q, and q2 are taken to be functions not only of N1 and
 N2 at time t, but of the numbers at some previous time, or of an integral of N1 or N2 between

 some time limits. Similar methods could also be used in order to study a chain of such predator-

 prey relations.

 This work arose out of some research carried out by the Bureau of Animal Population

 with the aid of a grant from the Agricultural Research Council, to which body grateful

 acknowledgement is made.
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