
Math 35
Winter 2014

Wednesday, February 19, Sample Solutions

Exercise 1: Explain what is wrong with the following things that could be
written by calculus students confused about limits.

1. lim
x→3

x2 − 9

x− 3
= x+ 3 = 3 + 3 so lim

x→3
= 6.

2. lim
x→∞

x

x+ 1
≈ 1.

3. lim
x→0

(
x sin

(
1

x

))
=
(

lim
x→0

x
)(

lim
x→0

sin

(
1

x

))
= 0

(
lim
x→0

sin

(
1

x

))
= 0.

4. lim
x→c

f(x) = L means that f(x) gets close to L but never equals L.

Solution:

1. It makes no sense to say lim
x→3

x2 − 9

x− 3
= x + 3, since the expression on

the left of the equals sign denotes a number, and the expression on the
right denotes a function of x.

It also makes no sense to say lim
x→3

= 6, since the expression on the left

of the equals sign doesn’t denote anything at all.

This should read

lim
x→3

x2 − 9

x− 3
= lim

x→3

(x+ 3)(x− 3)

x− 3
= lim

x→3
(x+ 3) = 3 + 3 = 6.

2. lim
x→∞

x

x+ 1
is a number, and it is not approximately equal to 1, it is

equal to 1. This should read lim
x→∞

x

x+ 1
= 1.

However, we could say, somewhat loosely, that for very large values of

x we have
x

x+ 1
≈ 1.
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3. The theorem that “the limit of the product is the product of the limits”
can be applied only when the relevant limits (the limits of the factors)

exist. We could apply exactly the same reasoning with sin

(
1

x

)
re-

placed by
1

x
to get

lim
x→0

(
x

(
1

x

))
=
(

lim
x→0

x
)(

lim
x→0

(
1

x

))
= 0

(
lim
x→0

(
1

x

))
= 0,

which is clearly wrong.

Of course, it is true that lim
x→0

(
x sin

(
1

x

))
= 0. We proved this using

the squeeze theorem.

4. It is not correct to say “f(x) never equals L.” We can have lim
x→c

f(x) = L

and also have f(x) = L for some (or many, or all) values of x near c.

As just one example, for f(x) = x

(
sin

1

x

)
, we have lim

x→0
f(x) = 0, and

every open interval containing 0 contains infinitely many points x for
which f(x) = 0.

Exercise 2: We saw that the function

f(x) =

{
1 if x is rational;

0 if x is irrational;

is not continuous at any point.
Define a function that is continuous at 0 but nowhere else.

Define a function that is discontinuous at every point
1

n
(where n is a

natural number), but continuous everywhere else (including at 0).

Solution:

f(x) =

{
x if x is rational;

−x if x is irrational.

g(x) =

{
x if x = 1

n
for some natural number n;

−x otherwise.
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Exercise 3: Suppose that f is continuous on [0, ∞) and lim
x→∞

f(x) exists.

(Note, this means that lim
x→∞

f(x) is a finite number.) Show that f is uniformly

continuous on [0,∞).
Recall, this means that

(∀ε > 0)(∃δ > 0)(∀x, y ∈ [0,∞))
(
|x− y| < δ =⇒ |f(x)− f(y)| < ε

)
,

where δ may depend on ε but not on x or y.
We have seen that if a function is continuous on a closed, bounded interval

[a, b], then it is uniformly continuous there. This may be useful.

Solution:
Suppose lim

x→∞
f(x) = L.

Let ε > 0. Because lim
x→∞

f(x) = L, there is some b such that, for all x > b,

we have |f(x)− L| < ε

2
.

Because f is uniformly continuous on the closed interval [0, b + 1], there
is some δ > 0 such that, for all x, y ∈ [0, b+ 1], we have

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

We may safely assume δ ≤ 1.
Now, suppose that x, y ∈ [0,∞) and |x− y| < δ. Since |x− y| < 1, either

both x and y are less than b+ 1, or both x and y are greater than b. In the
first case, x and y are both in [0, b+ 1], and |x− y| < δ, so by our choice of
δ, we have |f(x) − f(y)| < ε. In the second case, both x and y are greater

than b, so by our choice of b, we have |f(x)− L| < ε

2
and |f(y)− L| < ε

2
, so

it follows that |f(x)− f(y)| < ε.
Putting the two cases together, we see that if x, y ∈ [0,∞) and |x−y| < δ,

then |f(x)− f(y)| < ε. Since for any ε > 0 we can choose such a δ > 0, this
shows f is uniformly continuous on [0,∞).

Exercise 4: Monday’s exercises culminated in an example showing that f
can be continuous on a closed, bounded interval [a, b], but not of bounded
variation on [a.b].

Show that if f is continuous on [a, b], and its derivative f ′ is also contin-
uous on [a, b], then f is of bounded variation on [a, b]. You may use basic
facts about derivatives from calculus, including the Mean Value Theorem:
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If f is differentiable on [c, d], then there is a point z ∈ (c, d) such

that f ′(z) =
f(d)− f(c)

d− c
.

Solution:
Suppose f and [a, b] are as specified. Because the derivative of f is con-

tinuous on [a, b], it is also (by the Extreme Value Theorem) bounded on [a, b].
Let M be a bound; that is, for all c ∈ [a, b], we have |f ′(c)| < M .

Suppose a = x0 < x1 < · · · < xn−1 < xn = b is any partition of [a, b].
For any i with 1 ≤ i ≤ n, by the Mean Value Theorem, we have a point

z ∈ [xi−1, xi] such that f ′(z) =
f(xi)− f(xi−1)

xi − xi−1

.

Since |f ′(z)| < M , we have

∣∣∣∣f(xi)− f(xi−1)

xi − xi−1

∣∣∣∣ < M , or

|f(xi)− f(xi−1| < M |xi − xi−1| = M(xi − xi−1).

From this, we see that

n∑
i=1

|f(xi)− f(xi−1)| <
n∑

i=1

M(xi−xi−1) = M
n∑

i=1

(xi−xi−1) = M(xn−x0) = M(b−a).

Since V (f, [a, b]) is the supremum of the set of all such sums, this shows that
V (f, [a, b]) ≤M .

In particular, f is of bounded variation on [a.b].
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