23. Verify that the transformation rules
(a) $\mathcal{F}(x \cdot T)=\left(\frac{-1}{2 \pi i}\right)(\mathcal{F} T)^{\prime} ; \quad \mathcal{F}\left(x^{n} \cdot T\right)=\left(\frac{-1}{2 \pi i}\right)^{n}(\mathcal{F} T)^{(n)}$ and
(b) $\mathcal{F}\left(e^{2 \pi i a x} \cdot T\right)=\mathcal{F} T(s-a)$
hold for any distribution T.
24. Find $\mathcal{F}(\cos 2 \pi x)$ by expressing $\cos 2 \pi x$ in terms of complex exponentials and using (b) from the previous problem. (The answer is on page A-5.)
25. Verify that

$$
(\delta(7 x))^{\prime}=7 \delta^{\prime}(7 x)
$$

by
(a) applying both sides to a test function, and
(b) showing that both sides have the same Fourier transform. You may assume that all the transform rules on page A-13 hold for distributions, as well as for functions.
26. If α is a function and T is a distribution, use the definition

$$
\langle\alpha * T, \varphi\rangle=\langle T, \widetilde{\alpha} * \varphi\rangle
$$

of their convolution to show that $\mathcal{F}(\alpha * T)=\mathcal{F} \alpha \cdot \mathcal{F} T$. Hint: Start with $\langle\mathcal{F}(\alpha * T), \varphi\rangle$, move all the operations to φ, then write $\widetilde{\alpha}$ as $\mathcal{F F}^{-1} \widetilde{\alpha}$ and use the fact that \mathcal{F} takes products to convolutions.
27. Express the functions

$$
\delta(x-a) * \varphi
$$

and

$$
(\delta(x-a))+\delta) * \varphi,
$$

where φ is a test function and a is a constant, in as simple a form as possible. Your answers should not contain any distributions.
28. Find a solution to the DE

$$
y^{\prime \prime}+8 y^{\prime}+25 y=f(t)
$$

Express your answer in terms of a convolution of functions and also as an integral.
29. Compute $\operatorname{Var}(g)=\int_{\infty}^{\infty}|x|^{2}|g(x)|^{2} d x$ for the Gaussian $g(x)=\sqrt{\frac{a}{\pi}} e^{-a x^{2}}$. Also compute $\operatorname{Var}(g) \operatorname{Var}(\mathcal{F} g)$. Could the constant $\frac{1}{16 \pi^{2}}$ in Heisenberg's inequality be any larger?
30. The Gabor transform of f is defined by

$$
\mathcal{G} f(s, m)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i s x} e^{-(x-m)^{2} / 2} d x
$$

Show that

$$
f(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{G} f(s, m) e^{2 \pi i s x} e^{-(x-m)^{2} / 2} d s d m
$$

Hint: The expression just above for $f(x)$ is a triple integral. Recognize the innermost integral with respect to u (assuming the name of the variable of integration in the definition of $\mathcal{G} f$ has been changed from x to u) as a Fourier transform, and the integral with respect to s as an inverse Fourier transform.
31.
(a) From class or page 420 , the two distributions $\mathcal{F}\left(e^{i \pi x^{2}}\right)$ and $e^{-i \pi s^{2}}$ satisfy

$$
\mathcal{F}\left(e^{i \pi x^{2}}\right)=c e^{-i \pi s^{2}}
$$

for some constant c. The value of c can be determined by applying these distributions to a test function-a convenient one is $\varphi(x)=e^{-\pi x^{2}}$. Find c by first expressing both sides of the equation

$$
\left\langle\mathcal{F}\left(e^{i \pi x^{2}}\right), e^{-\pi s^{2}}\right\rangle=\left\langle e^{i \pi x^{2}}, \mathcal{F}\left(e^{-\pi s^{2}}\right)\right\rangle
$$

as an integral. This gives the second line of Exercise 7.45 on p. 466. Then do the rest of Exercise 7.45.
(b) What are $\mathcal{F}^{-1}\left(e^{-i \pi s^{2}}\right)$ and $\mathcal{F}\left(e^{-i \pi x^{2}}\right)$?
(c) Use the dilation rule on p. A-13 to find $\mathcal{F}\left(e^{-i \pi a x^{2}}\right)$ where a is any real constant. Consider the cases $a<0, a=0$ and $a>0$ separately.
32. Find the solution $u(x, t)$ to the heat equation

$$
\alpha^{2} u_{x x}=u_{t}, \quad-\infty<x<\infty, \quad t>0
$$

which satisfies the initial condition

$$
u(x, 0)=\delta(x-a), \quad-\infty<x<\infty
$$

where a is a constant. Simplify your answer as much as possible.
33. Assume that f is a function satisfying $\int_{-\infty}^{\infty}|f(x)| d x<\infty$ and $\int_{-\infty}^{\infty}|f(x)|^{2} d x=1$. Show that if u is the solution to the free Schrödinger equation

$$
u_{t}=\frac{i \lambda}{4 \pi} u_{x x}
$$

satisfying

$$
u(x, 0)=f(x)
$$

then the integral

$$
\int_{-\infty}^{\infty}|u(x, t)|^{2} d x=1
$$

for each value of $t>0$. Hint: Do not work directly with u. Use the Parseval or Plancherel identity and work with $U=\mathcal{F} u$.
34. (Divergence theorem review problem) Evaluate the integral

$$
\int_{\partial R}\left(x^{2} \mathbf{i}-2 x y \mathbf{j}\right) \cdot \mathbf{n} d s
$$

where R is the region enclosed by the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and \mathbf{n} is the outwardpointing unit normal vector to the boundary ∂R of R.
35. Find the solution $u(x, y)$ to Laplace's equation

$$
u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, \quad y>0
$$

on the upper half-plane which satisfies the boundary condition

$$
u(x, 0)=H(x)=\text { Heaviside function, } \quad-\infty<x<\infty .
$$

Describe the level curves of u. What is the value of u along each of them? (Hint: The solution u can be expressed in a simple form in terms of the angle $\theta=\tan ^{-1} \frac{y}{x}$ of polar coordinates.)
36. Find the solution to the non-homogeneous wave equation

$$
c^{2} u_{x x}(x, t)+f(x, t)=u_{t t}(x, t), \quad-\infty<x<\infty, \quad t>0
$$

satisfying the homogeneous initial conditions

$$
u(x, 0)=0 \quad \text { and } \quad u_{t}(x, 0)=0 \quad \text { for } \quad-\infty<x<\infty
$$

Write the solution in as simple a form as possible. (Hint: This is very similar in some ways to the problem

$$
\begin{gathered}
\alpha^{2} u_{x x}+f(x, t)=u_{t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=0, \quad-\infty<x<\infty
\end{gathered}
$$

which we solved in class. Also, the forms of the answers to both problems are similar.)

