
In these problems, you will need to use

F(e−ax2
)(s) =

√
π

a
e−

π2
a s2

= F−1(e−ax2
)(s).

11. Compute
e−ax2

∗ e−bx2

where a and b are positive constants. Use the Fourier transform and its inverse.

12. In class we derived the solution u(x, t) given in exercise 1.20, p.72, to the heat con-
duction problem for an infinite rod with initial temperature function f = F−1A. Now
write the solution u(x, t) as a convolution of f with a gaussian function. Briefly say
how the gaussian changes with time.

In the following problems, you may want to express some of your work in terms of the
heat kernel

Kt(x) =
1√

4πα2t
e−x2/4α2t.

13. In class we used the Fourier sine transform to solve the heat conduction problem

α2uxx = ut, x > 0, t > 0 (1)
u(0, t) = 0, t ≥ 0 (2)
u(x, 0) = f(x), x ≥ 0 (3)

for a semi-infinite rod, where f was the initial temperature function of the rod. The
expression for the solution u(x, t) was complicated and hard to interpret. Find a
simpler form of the solution by following these steps:
(a) Solve the usual (boundaryless) heat conduction problem

α2uxx = ut, −∞ < x < ∞, t > 0 (4)
u(x, 0) = g(x), −∞ < x < ∞, (5)

where g is the odd extension of f . Express the solution u(x, t) as a convolution.

(b) Show that the solution u(x, t) you found in part (a) satisfies the boundary condi-
tion u(0, t) = 0 for t ≥ 0. This is condition (2). The function u(x, t) automatically
satisfies (1) and (3) since it satisfies (4) and (5).

14. (Heat-conduction with nonconstant coefficients) Find the solution to the partial dif-
ferential equation

tuxx = ut, −∞ < x < ∞, t > 0

which satisfies the initial condition

u(x, 0) = f(x), −∞ < x < ∞.



Write the solution as a convolusion in as simple a form as possible.

15. We have seen that the solution to the usual heat conduction problem

α2uxx = ut, −∞ < x < ∞, t > 0

u(x, 0) = f(x), −∞ < x < ∞
is u(x, t) = f ∗Kt(x), with Kt as just after problem 12. Show that if t0 > 0 then the
function h(x) = u(x, t0) has derivitives of all orders, even if f is not differentiable or
even continuous. (Compare this with problem 4.)

16. Show that the function T defined on test functions by T (ϕ) = 3ϕ′′(2) or 〈T, ϕ〉 =
3ϕ′′(2) is linear and so defines a distribution.

17. Does the formula 〈T, ϕ〉 = (ϕ(0))2 define a distribution. Why or why not?

18. Find, in the distribution sense, the first three derivatives of the function f(x) = |x|.

19. Which of these functions is rapidly decreasing? Which is a Schwartz function? Explain
briefly.

(a) sinc x (b) e−x2
sinx (c) e−x2

sin(ex2
) (d) e−2x2

sin(ex2
)

20. (optional) In class we saw that the solution to the inhomogenous heat equation with
homogeneous initial conditions

α2uxx + f(x, t) = ut, −∞ < x < ∞, t > 0

u(x, 0) = 0, −∞ < x < ∞
can be written as

u(x, t) =
∫ t

0

Kt−w ∗ f(·, w)(x) dw

where Kt is the usual heat kernel as in problem 12. The term f(x, t) in the PDE may
be interpreted as the rate (per unit time per unit length) at which heat is added to
the wire at time t and position x. With this interpretation, what is the total amount
of heat

∫∞
−∞ u(x, t0) dx in the wire at time t0 in terms of f? Check that this agrees

with the value of
∫∞
−∞ u(x, t0) dx if this integral is done using u(x, t) as written above.

In the next two problems, H(x) is the heaviside function.

21. Express these distributions in as simple a form as possible.
(a) (H(x) cos x)′ (b) (δ sin 2x)′ (c) δ′ sin 2x (d) x2δ′ (e) xnδ(n)

22.
(a) Find a distribution F = f · H, where f is a twice continuously differentiable

function which satisfies, in the distribution sense, the differential equation

F ′′ + 4F = δ.

(b) Do the same for the equation

F ′′ − 4F = 2δ − δ′.


