In these problems, you will need to use

$$
\mathcal{F}\left(e^{-a x^{2}}\right)(s)=\sqrt{\frac{\pi}{a}} e^{-\frac{\pi^{2}}{a} s^{2}}=\mathcal{F}^{-1}\left(e^{-a x^{2}}\right)(s)
$$

11. Compute

$$
e^{-a x^{2}} * e^{-b x^{2}}
$$

where a and b are positive constants. Use the Fourier transform and its inverse.
12. In class we derived the solution $u(x, t)$ given in exercise $1.20, \mathrm{p} .72$, to the heat conduction problem for an infinite rod with initial temperature function $f=\mathcal{F}^{-1} A$. Now write the solution $u(x, t)$ as a convolution of f with a gaussian function. Briefly say how the gaussian changes with time.

In the following problems, you may want to express some of your work in terms of the heat kernel

$$
K_{t}(x)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} e^{-x^{2} / 4 \alpha^{2} t}
$$

13. In class we used the Fourier sine transform to solve the heat conduction problem

$$
\begin{align*}
& \alpha^{2} u_{x x}=u_{t}, \quad x>0, \quad t>0 \tag{1}\\
& u(0, t)=0, \quad t \geq 0 \tag{2}\\
& u(x, 0)=f(x), \quad x \geq 0 \tag{3}
\end{align*}
$$

for a semi-infinite rod, where f was the initial temperature function of the rod. The expression for the solution $u(x, t)$ was complicated and hard to interpret. Find a simpler form of the solution by following these steps:
(a) Solve the usual (boundaryless) heat conduction problem

$$
\begin{align*}
\alpha^{2} u_{x x} & =u_{t}, \quad-\infty<x<\infty, \quad t>0 \tag{4}\\
u(x, 0) & =g(x), \quad-\infty<x<\infty \tag{5}
\end{align*}
$$

where g is the odd extension of f. Express the solution $u(x, t)$ as a convolution.
(b) Show that the solution $u(x, t)$ you found in part (a) satisfies the boundary condition $u(0, t)=0$ for $t \geq 0$. This is condition (2). The function $u(x, t)$ automatically satisfies (1) and (3) since it satisfies (4) and (5).
14. (Heat-conduction with nonconstant coefficients) Find the solution to the partial differential equation

$$
t u_{x x}=u_{t}, \quad-\infty<x<\infty, \quad t>0
$$

which satisfies the initial condition

$$
u(x, 0)=f(x), \quad-\infty<x<\infty
$$

Write the solution as a convolusion in as simple a form as possible.
15. We have seen that the solution to the usual heat conduction problem

$$
\begin{gathered}
\alpha^{2} u_{x x}=u_{t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=f(x), \quad-\infty<x<\infty
\end{gathered}
$$

is $u(x, t)=f * K_{t}(x)$, with K_{t} as just after problem 12 . Show that if $t_{0}>0$ then the function $h(x)=u\left(x, t_{0}\right)$ has derivitives of all orders, even if f is not differentiable or even continuous. (Compare this with problem 4.)
16. Show that the function T defined on test functions by $T(\varphi)=3 \varphi^{\prime \prime}(2)$ or $\langle T, \varphi\rangle=$ $3 \varphi^{\prime \prime}(2)$ is linear and so defines a distribution.
17. Does the formula $\langle T, \varphi\rangle=(\varphi(0))^{2}$ define a distribution. Why or why not?
18. Find, in the distribution sense, the first three derivatives of the function $f(x)=|x|$.
19. Which of these functions is rapidly decreasing? Which is a Schwartz function? Explain briefly.
(a) $\operatorname{sinc} x$
(b) $e^{-x^{2}} \sin x$
(c) $e^{-x^{2}} \sin \left(e^{x^{2}}\right)$
(d) $e^{-2 x^{2}} \sin \left(e^{x^{2}}\right)$
20. (optional) In class we saw that the solution to the inhomogenous heat equation with homogeneous initial conditions

$$
\begin{aligned}
\alpha^{2} u_{x x}+f(x, t) & =u_{t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0) & =0, \quad-\infty<x<\infty
\end{aligned}
$$

can be written as

$$
u(x, t)=\int_{0}^{t} K_{t-w} * f(\cdot, w)(x) d w
$$

where K_{t} is the usual heat kernel as in problem 12. The term $f(x, t)$ in the PDE may be interpreted as the rate (per unit time per unit length) at which heat is added to the wire at time t and position x. With this interpretation, what is the total amount of heat $\int_{-\infty}^{\infty} u\left(x, t_{0}\right) d x$ in the wire at time t_{0} in terms of f ? Check that this agrees with the value of $\int_{-\infty}^{\infty} u\left(x, t_{0}\right) d x$ if this integral is done using $u(x, t)$ as written above.

In the next two problems, $H(x)$ is the heaviside function.
21. Express these distributions in as simple a form as possible.
(a) $(H(x) \cos x)^{\prime}$
(b) $(\delta \sin 2 x)^{\prime}$
(c) $\delta^{\prime} \sin 2 x$
(d) $x^{2} \delta^{\prime}$
(e) $x^{n} \delta^{(n)}$
22.
(a) Find a distribution $F=f \cdot H$, where f is a twice continuously differentiable function which satisfies, in the distribution sense, the differential equation

$$
F^{\prime \prime}+4 F=\delta
$$

(b) Do the same for the equation

$$
F^{\prime \prime}-4 F=2 \delta-\delta^{\prime}
$$

