Quiz 2

Rings, ideals and Arithmetic

Solution

1. Let $A, B \in \mathbb{R}[X]$ be polynomials. Consider the rational function $f(X)=\frac{A(X)}{B(X)}$. Prove that there exist polynomials $\alpha, \beta \in \mathbb{R}[X]$ such that:

$$
f(X)=\alpha(X)+\frac{\beta(X)}{B(X)} \quad \text { and } \quad d^{\circ}(\beta)<d^{\circ}(B)
$$

By the Euclidean Division Theorem in $\mathbb{R}[X]$, there exist $\alpha, \beta \in \mathbb{R}[X]$ such that

$$
A=B \alpha+\beta
$$

with $d^{\circ}(\beta)<d^{\circ}(B)$. It follows that

$$
f(X)=\frac{B(X) \alpha(X)+\beta(X)}{B(X)}=\frac{B(X) \alpha(X)}{B(X)}+\frac{\beta(X)}{B(X)}=\alpha(X)+\frac{\beta(X)}{B(X)} .
$$

2. Let A be a commutative ring with identity 1_{A} and J an ideal in A.
a. Recall without justification what $0_{A / J}$ and $1_{A / J}$ are.

$$
0_{A / J}=\left[0_{A}\right]=0_{A}+J=J \quad \text { and } \quad 1_{A / J}=\left[1_{A}\right]=1_{A}+J=\left\{1_{A}+j, j \in J\right\}
$$

b. Let $x \in A$. Verify that the set $J_{x}=\{a x+j ; a \in A, j \in J\}$ is an ideal in A.

Verification is straightforward.

c. Prove that if J is a maximal ideal, then A / J is a field.

It is well-known that A / J is a commutative ring with identity. Let $X \neq 0$ in A / J. Then X has a representative $x \notin J$. The associated ideal J_{x} contains J (let $a=0$) strictly (it contains x) and J is assumed maximal so $J_{x}=A$.
In particular, 1_{A} belongs to J_{x}, so there exists $a \in A$ and $j \in J$ such that $a x+j=1_{A}$ and one checks that $[a]$ is an inverse for $[x]=X$ in A / J, which is therefore a field.
3. Let A and B be rings, I an ideal in A and $\varphi \in \operatorname{Hom}(A, B)$ a ring homomorphism.

Find a necessary and sufficient condition on φ for the function

$$
\begin{aligned}
\tilde{\varphi}: A / I & \longrightarrow B \\
{[a] } & \longmapsto \varphi(a)
\end{aligned}
$$

to be well-defined.

If X is a class in A / I, the element $\tilde{\varphi}(X)$ should not depend on the representative of X in A. In other words, $\tilde{\varphi}$ will be well-defined if and only if

$$
[a]=[b] \quad \Rightarrow \quad \tilde{\varphi}([a])=\tilde{\varphi}([b])
$$

that is, if $[a]=[b]$ implies $\varphi(a)=\varphi(b)$.
Since $[a]=[b]$ is equivalent by definition to $a-b \in I$, the condition becomes

$$
a-b \in I \quad \Rightarrow \quad \varphi(a)=\varphi(b)
$$

Since φ is a homomorphism, $\varphi(a)=\varphi(b)$ amounts to $a-b \in \operatorname{ker} \varphi$ and a necessary and sufficient condition for $\tilde{\varphi}$ to be well-defined is the inclusion $I \subset \operatorname{ker} \varphi$.
4. Let A be a commutative ring. Recall that a proper ideal I in A is said prime if for $a, b \in A$, one has $a b \in I \quad \Rightarrow \quad a \in I$ or $b \in I$.

a. Determine all the prime ideals in \mathbb{Z}.

Every ideal in \mathbb{Z} is of the form $\langle n\rangle=n \mathbb{Z}=\{$ the multiples of $n\}$. Such an ideal is prime if and only if $n \mid a b$ implies $n \mid a$ or $n \mid b$. If n is a prime number, this holds true by Euclid's Lemma.

Conversely, if n is not prime, say $n=n_{1} n_{2}$ with $\left|n_{1}\right|>1$ and $\left|n_{2}\right|>1$, then $n \mid n_{1} n_{2}$ but n divides neither n_{1} nor n_{2} since they are both strictly smaller in absolute value. The prime ideals in \mathbb{Z} are therefore the ideals of the form $p \mathbb{Z}$ with p prime number ${ }^{1}$.

[^0]b. Assume that in the integral domain A, every ideal is of the form $\langle a\rangle=a A$ for some $a \in A$. Prove that in such a ring, prime ideals are maximal.

Let $I=\langle a\rangle$ be a prime ideal and K an ideal such that $I \subsetneq J \subset A$. Since all ideals in A are principal, there exists some element $x \in A$ such that $J=\langle x\rangle$ and the strict containment condition implies that x is not a multiple of a.

On the other hand, a is in J so it must be a multiple of x, that is $a=k m$ for some $k \in A$. Since a is in the prime ideal I, either k or m must be in I. Since $m \notin I$, it implies that $k \in I$, that is, k is a multiple of a.

In other words, $k=a \ell$ with $\ell \in A$, so that $a=a \ell m$ which, by cancellation in the integral domain A, implies that ℓ is an inverse for m. It follows that K contains an invertible element, so that $K=A$.
c. Describe the ideal $\langle 4\rangle \cap\langle 6\rangle$ of \mathbb{Z}
$\langle 4\rangle \cap\langle 6\rangle=\langle 12\rangle$. The argument is a special case of the one below.
d. Let $m, n \in \mathbb{Z}$. Describe the ideal $\langle m\rangle \cap\langle n\rangle$ of \mathbb{Z}.

Since every ideal of \mathbb{Z} is principal, there exsists some number ℓ such that

$$
\langle m\rangle \cap\langle n\rangle=\langle\ell\rangle .
$$

Since $\ell \in\langle m\rangle$ and $\ell \in\langle n\rangle$, this generator must be a common multiple of m and n. We will prove that ℓ is the smallest such common multiple.

Indeed, if k is a common multiple of m and n, then k belongs to $\langle m\rangle \cap\langle n\rangle=\langle\ell\rangle$ so $\ell \mid k$. In other words, ℓ is a common multiple of m and n that divides all the common multiples of m and n, so it is a lowest common divisor of m and n and we have proved that $\langle m\rangle \cap\langle n\rangle=\langle\operatorname{lcm}(m, n)\rangle$.

[^0]: ${ }^{1}$ This is the reason why these ideals are called prime in the first place.

