Quiz 2

Rings, ideals and Arithmetic

1. Let $A, B \in \mathbb{R}[X]$ be polynomials and consider the rational function $f(X)=\frac{A(X)}{B(X)}$. Prove that there exist polynomials $\alpha, \beta \in \mathbb{R}[X]$ such that:

$$
f(X)=\alpha(X)+\frac{\beta(X)}{B(X)} \quad \text { and } \quad d^{\circ}(\beta)<d^{\circ}(B)
$$

2. Let A be a commutative ring with identity 1_{A} and J an ideal in A. It is well-known that A / J is a commutative ring with identity (do not prove it). a. Recall without justification what $0_{A / J}$ and $1_{A / J}$ are.
b. Let $x \in A$. Verify that the set $J_{x}=\{a x+j ; a \in A, j \in J\}$ is an ideal in A.
c. Prove that if J is a maximal ideal, then A / J is a field.
3. Let A and B be rings, I an ideal in A and $\varphi \in \operatorname{Hom}(A, B)$ a ring homomorphism. Find a necessary and sufficient condition on φ for the function

$$
\begin{aligned}
\tilde{\varphi}: A / I & \longrightarrow B \\
{[a] } & \longmapsto \varphi(a)
\end{aligned}
$$

to be well-defined.
4. Let A be a commutative ring. Recall that a proper ideal I in A is said prime if for $a, b \in A$,

$$
a b \in I \quad \Rightarrow \quad a \in I \text { or } b \in I .
$$

a. Determine all the prime ideals in \mathbb{Z}.
b. Assume that in the ring A, every ideal is of the form $\langle a\rangle=a A$ for some $a \in A$. Prove that in such a ring, prime ideals are maximal.

Reminder (do not prove this): an intersection of ideals is an ideal.
c. Describe the ideal $\langle 4\rangle \cap\langle 6\rangle$ of \mathbb{Z}.
d. Let $m, n \in \mathbb{Z}$. Describe the ideal $\langle m\rangle \cap\langle n\rangle$ of \mathbb{Z}.

