Quiz 1

Composition laws, groups and subgroups

Solution

1. Consider the composition law defined on \mathbb{Z} by

$$
p * q=p-2 q .
$$

Is it associative?

Let p, q and r be integers. Then

$$
\begin{aligned}
(p * q) * r & =(p-2 q) * r \\
& =p-2 q-2 r
\end{aligned}
$$

while

$$
\begin{aligned}
p *(q * r) & =p *(q-2 r) \\
& =p-2(q-2 r) \\
& =p-2 q+4 r .
\end{aligned}
$$

The expressions seem different in general so we should be able to supply a counterexample to the associativity property for the law $*$.

Indeed, if $p=q=0$ and $r=1$, we get

$$
(0 * 0) * 1=-2 \neq 4=0 *(0 * 1)
$$

Therefore, $*$ is not associative.
2. The composition law defined on $\Gamma=\{(x, y) \in \mathbb{R} \times \mathbb{R}, y \neq 0\}$ by

$$
(a, b) \boxtimes(c, d)=(a d+b c, b d)
$$

is associative. Is (Γ, \boxtimes) a group?

First, we look for a neutral element, that is a couple $\left(e_{1}, e_{2}\right)$ such that, for every $(a, b) \in \Gamma$,

$$
(a, b) \boxtimes\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right) \boxtimes(a, b)=(a, b) .
$$

In particular e_{1} and e_{2} must be such that

$$
a e_{2}+b e_{1}=a \quad \text { and } \quad b e_{2}=b
$$

for all $(a, b) \in \Gamma$. The second condition implies that $e_{2}=1$ and the first condition then becomes

$$
a+b e_{1}=a .
$$

Since this must hold for any value of a and b, then necessarily $e_{1}=0$.
At this point, we have proved that if there is a neutral element then it must be $(0,1)$. Conversely, a direct computation shows that

$$
(a, b) \boxtimes(0,1)=(0,1) \boxtimes(a, b)=(a, b)
$$

for every $(a, b) \in \Gamma$, which proves that $(0,1)$ is neutral for \boxtimes.
Next, we study the existence of inverses. For $(a, b) \in \Gamma$, the equation

$$
(a, b) \boxtimes(x, y)=(0,1)
$$

is equivalent to

$$
a y+b x=0 \quad \text { and } \quad b y=1 .
$$

It follows from the second equation that $y=\frac{1}{b}$ and the first equation yields

$$
\frac{a}{b}+b x=0
$$

so that $x=-\frac{a}{b^{2}}$. Again, one verifies that

$$
(a, b) \boxtimes\left(-\frac{a}{b^{2}}, \frac{1}{b}\right)=\left(-\frac{a}{b^{2}}, \frac{1}{b}\right) \boxtimes(a, b)=(0,1)
$$

for all $(a, b) \in \Gamma$, so that every element in Γ has an inverse.
Conclusion: (Γ, \boxtimes) is a group.
3. Let G be a group with neutral element e and a, b elements in G satisfying

$$
a^{-1} b a^{-1}=b^{-1} a b^{-1}
$$

Solve simultaneously the equations $a x^{2}=b$ and $x^{3}=e$.

Composing with a^{-1} on the left, the first equation leads to

$$
x^{2}=a^{-1} b
$$

Composing on the left with x^{-1} then gives

$$
x^{3}=x a^{-1} b
$$

and the second equation implies that

$$
x a^{-1} b=e .
$$

In other words, if x is solution of the problem, it must be the inverse of $a^{-1} b$ in G :

$$
x=b^{-1} a .
$$

Let us verify that $x=b^{-1} a$ actually satisfies both equations. First,

$$
a x^{2}=a b^{-1} a b^{-1} a
$$

Notice that the assumption on a and b can be rephrased as $a b^{-1} a b^{-1} a=b$ (compose with a on the left and on the right) so that the first equation is satisfied.

Finally,

$$
\begin{array}{rlr}
x^{3} & =b^{-1} a b^{-1} a b^{-1} a \\
& =\left(b^{-1} a b^{-1}\right)\left(a^{-1} b a^{-1}\right)^{-1} \\
& =\left(b^{-1} a b^{-1}\right)\left(b^{-1} a b^{-1}\right)^{-1} \quad \text { by the relation on } a \text { and } b \\
& =e
\end{array}
$$

This shows that the problem admits a unique solution, namely $x=b^{-1} a$.
4. Let $H=\left\{\frac{p}{2^{n}}, p \in \mathbb{Z}, p \neq 0, n \in \mathbb{N}\right\}$. Is H a subgroup of $\left(\mathbb{Q}^{\times}, \times\right)$?

Although it is stable under products, we observe that H is not stable under inverses. For instance $\frac{3}{2}$ belongs to H but its inverse in \mathbb{Q}^{\times}is $\frac{2}{3}$, which cannot be written with a power of 2 as its denominator.
Therefore, H is not a subgroup of \mathbb{Q}^{\times}.

