Quiz 1

Composition laws, groups and subgroups

Solution

1. Consider the composition law defined on $\mathbb Z$ by

$$p * q = p - 2q.$$

Is it associative?

Let p, q and r be integers. Then

$$(p*q)*r = (p-2q)*r$$
$$= p-2q-2r$$

while

$$p * (q * r) = p * (q - 2r)$$

= $p - 2(q - 2r)$
= $p - 2q + 4r.$

The expressions seem different in general so we should be able to supply a counterexample to the associativity property for the law *.

Indeed, if p = q = 0 and r = 1, we get

$$(0*0)*1 = -2 \neq 4 = 0*(0*1).$$

Therefore, * is not associative.

2. The composition law defined on $\Gamma = \{(x, y) \in \mathbb{R} \times \mathbb{R}, y \neq 0\}$ by

$$(a,b) \boxtimes (c,d) = (ad + bc, bd)$$

is associative. Is (Γ, \boxtimes) a group?

First, we look for a neutral element, that is a couple (e_1, e_2) such that, for every $(a, b) \in \Gamma$,

$$(a,b) \boxtimes (e_1, e_2) = (e_1, e_2) \boxtimes (a,b) = (a,b).$$

In particular e_1 and e_2 must be such that

$$ae_2 + be_1 = a$$
 and $be_2 = b$

for all $(a, b) \in \Gamma$. The second condition implies that $e_2 = 1$ and the first condition then becomes

$$a + be_1 = a$$
.

Since this must hold for any value of *a* and *b*, then necessarily $e_1 = 0$.

At this point, we have proved that *if* there is a neutral element then it must be (0, 1). Conversely, a direct computation shows that

$$(a,b) \boxtimes (0,1) = (0,1) \boxtimes (a,b) = (a,b)$$

for every $(a, b) \in \Gamma$, which proves that (0, 1) is neutral for \boxtimes .

Next, we study the existence of inverses. For $(a, b) \in \Gamma$, the equation

$$(a,b) \boxtimes (x,y) = (0,1)$$

is equivalent to

$$ay + bx = 0$$
 and $by = 1$.

It follows from the second equation that $y = \frac{1}{b}$ and the first equation yields

$$\frac{a}{b} + bx = 0$$

so that $x = -\frac{a}{b^2}$. Again, one verifies that

$$(a,b) \boxtimes \left(-\frac{a}{b^2}, \frac{1}{b}\right) = \left(-\frac{a}{b^2}, \frac{1}{b}\right) \boxtimes (a,b) = (0,1)$$

for all $(a, b) \in \Gamma$, so that every element in Γ has an inverse.

Conclusion: (Γ, \boxtimes) is a group.

3. Let *G* be a group with neutral element *e* and *a*, *b* elements in *G* satisfying

 $a^{-1}ba^{-1} = b^{-1}ab^{-1}.$

Solve simultaneously the equations $ax^2 = b$ and $x^3 = e$.

Composing with a^{-1} on the left, the first equation leads to

$$x^2 = a^{-1}b.$$

Composing on the left with x^{-1} then gives

$$x^3 = xa^{-1}b$$

and the second equation implies that

$$xa^{-1}b = e.$$

In other words, if x is solution of the problem, it must be the inverse of $a^{-1}b$ in G:

$$x = b^{-1}a.$$

Let us verify that $x = b^{-1}a$ actually satisfies both equations. First,

$$ax^2 = ab^{-1}ab^{-1}a.$$

Notice that the assumption on *a* and *b* can be rephrased as $ab^{-1}ab^{-1}a = b$ (compose with *a* on the left and on the right) so that the first equation is satisfied.

Finally,

$$x^{3} = b^{-1}ab^{-1}ab^{-1}a$$

= $(b^{-1}ab^{-1})(a^{-1}ba^{-1})^{-1}$
= $(b^{-1}ab^{-1})(b^{-1}ab^{-1})^{-1}$ by the relation on *a* and *b*
= *e*.

This shows that the problem admits a unique solution, namely $x = b^{-1}a$.

4. Let
$$H = \left\{ \frac{p}{2^n}, \ p \in \mathbb{Z}, \ p \neq 0, \ n \in \mathbb{N} \right\}$$
. Is H a subgroup of $(\mathbb{Q}^{\times}, \times)$?

Although it is stable under products, we observe that *H* is not stable under inverses. For instance $\frac{3}{2}$ belongs to *H* but its inverse in \mathbb{Q}^{\times} is $\frac{2}{3}$, which cannot be written with a power of 2 as its denominator.

Therefore, *H* is not a subgroup of \mathbb{Q}^{\times} .