Math 31

Midterm Examination

Rules

- This is a **closed book exam**. No document is allowed.
- Cell phones and other electronic devices must be turned off.
- Questions and requests for clarification can be addressed to the instructor only.
- You are allowed to use the result of a previous question even if you did not prove it, as long as you indicate it explicitly.

Grading

- In order to receive full credit, solutions must be **justified with full sentences**.
- The clarity of your explanations will enter the appreciation of your work.
- Every individual question is worth 5 points.

Last piece of advice

Read the entire exam before you start to write anything.

1. Let *G* and *G'* be groups and $m : G \longrightarrow G'$ a group homomorphism. Prove that ker *m* is a subgroup of *G*.

Note: we proved in class that kernels are normal subgroups. **Do not use this fact.**

2. Let G be an abelian group. Prove that every subgroup of G is normal.

3. Consider the additive group $\mathcal{C}^{\infty}(\mathbb{R})$ of differentiable functions on \mathbb{R} and the map $\varphi : \mathcal{C}^{\infty}(\mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R})$ defined by

$$\varphi(f) = f' - f.$$

a. Is φ a group homomorphism?

b. Is φ injective?

4. Recall that a matrix $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with real coefficients is invertible if and only if $ad - bc \neq 0$, in which case its inverse is

$$g^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

The multiplicative group of invertible matrices of size 2×2 is denoted by $GL(2, \mathbb{R})$.

a. Consider the map $T : \operatorname{GL}(2, \mathbb{R}) \longrightarrow \mathbb{R}$ defined by

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right) = a + d.$$

Is *T* a group homomorphism?

b. Prove that the subset *H* of matrices of the form $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ with a > 0 and $b \in \mathbb{R}$ is a subgroup of $GL(2, \mathbb{R})$.

c. Prove that the map $\psi: H \longrightarrow \operatorname{GL}(2, \mathbb{R})$ defined by

$$\psi\left(\left[\begin{array}{cc}a&b\\0&1\end{array}\right]\right)=\left[\begin{array}{cc}1&0\\\ln(a)&1\end{array}\right]$$

is a group homomorphism.

d. Determine ker ψ .

5. Let *G* be a group and *H*, *K* subgroups of *G*. We assume that the reunion $H \cup K$ is a subgroup of *G*.

Prove that $H \subset K$ or $K \subset H$.

6. Let *G* be a group. Its *center* is by definition the set Z(G) of elements that commute with all the elements of *G*:

$$Z(G) = \{g \in G, ag = ga \text{ for all } a \in G\}.$$

a. Prove that the relation \mathcal{R} defined on *G* by

$$x\mathcal{R}y \quad \Leftrightarrow \quad \exists g \in G \ , \ y = gxg^{-1}$$

is an equivalence relation.

b. Let $z \in Z(G)$. Determine the equivalence class of z.

c. Prove that Z(G) is a subgroup of G.

d. Is Z(G) normal in G?

7. Let G be a group with neutral element e and a, b elements in G such that

 $a^2 = e$, $b^3 = e$, ab = ba.

Let Γ be the subgroup of *G* generated by $\{a, b\}$.

a. Prove that Γ is necessarily abelian.

b. How many different elements can Γ contain (at the most)?