
Elements of solution for Homework 6

Chapter 17

F.1

If (G,+) is an abelian group, then End(G), equipped with pointwise addition is a
subgroup of the additive group of functions from G to itself. The neutral element is
the constant map g 7→ 0G and the inverse of u ∈ End(G) is the map −u : g 7→ −u(x).

As for the multiplicative structure, composition is associative on functions from G to
itself and a composition of homomorphisms is a homomorphism so ◦ is an internal
composition law on End(G) for which the identical map g 7→ g is an identity.

To check distributivity, let u, v and w be elements in End(G). Then, for any g ∈ G,

u ◦ (v + w)(g) = u ((v + w)(x))
= u(v(x) + w(x)) by definition of the addition on End(G)
= u(v(x)) + u(w(x)) because u is a morphism
= u ◦ v(x) + u ◦ w(x)

so u ◦ (v + w) = u ◦ v + u ◦ w.

Similarly,

((v + w) ◦ u) (g) = (v + w) (u(x))
= v(u(x)) + w(u(x)) by definition of the addition on End(G)
= v ◦ u(x) + w ◦ u(x)

so1 (v + w) ◦ u = v ◦ u+ w ◦ u.

1Notice that the fact that the maps are homomorphisms is not necessary to prove distributivity
on that side.
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F.2

To determine all the endomorphisms of Z/4Z, we notice that any homomorphism
from a cyclic group to another group (cyclic or not) is determined by the image of a
generator.

More precisely, if (G,+) = 〈a〉, then any element g ∈ G is of the form a+ a+ . . .+ a
or (−a) + (−a) + . . .+ (−a), that is

g = n · a

for some n ∈ Z. Now, if G′ is any group (denoted multiplicatively) and ϕ ∈
Hom(G,G′), we get

ϕ(g) = ϕ(n · a) = ϕ(a)n

so the knowledge of ϕ(a) characterizes ϕ.

In the particular case of G = Z/4Z = 〈1〉 and G′ = Z/4Z with additive notation, the
previous relation become

(†) ϕ(n) = nϕ(1).

For k ∈ {0, 1, 2, 3}, we will denote by ϕk the map

Z/4Z −→ Z/4Z
n 7−→ kn

.

Then End(Z/4Z) = {ϕ0, ϕ1, ϕ2, ϕ3} and we will prove that the map

Z/4Z −→ End(Z/4Z)
k 7−→ ϕk

is an isomorphism of rings2. Straightforward calculations show that

ϕk+k′ = ϕk + ϕk′ and ϕkk′ = ϕk ◦ ϕk′ .

To prove bijectivity, one can either prove injectivity and notice that surjectivity fol-
lows from (†) or verify that the map

End(Z/4Z) −→ Z/4Z
ϕ 7−→ ϕ(1)

is an inverse for the map under study. Therefore, End(Z/4Z) has the same tables as
Z/4Z.

2This generalizes to End(Z/nZ) for any n.
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Chapter 18

A.1

Use the subgring criterion.

A.6

Same method. Notice that the map


R −→ M2(R)

x 7−→
[
0 0
0 x

]
is an ring isomorphism.

B.1

The diagonal subring {(n, n) , n ∈ Z} is a subring of Z× Z but it is not absorbent.

The map
{

Z× Z −→ Z/5Z× Z
(a, b) 7−→ ([a], b)

is a ring homomorphism so its kernel 5Z× {0}

is an ideal.

The subset {(m,n) , m+ n ∈ 2Z} is a subring of Z× Z but it is not absorbent.

The subset {(m,n) , mn ∈ 2Z} of Z× Z is not stable under addition.

The map
{

Z× Z −→ Z/2Z× Z/3Z
(a, b) 7−→ ([a], [b])

is a ring homomorphism so its kernel 2Z×

3Z is an ideal.

B.5

The product of a continuous function (such as x 7→ 1) with a discontinuous function
need not be continuous so C(R) is not an ideal in F(R).

H.5

Follow the hints of the textbook, keeping in mind that a function is invertible if
and only if it never vanishes. It is ok to use the result of Exercise D.5, which we
established in class.
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I.1

The more general result is that if f is a ring homomorphism from A to B and I is an
ideal in A, then f(I) is an ideal in f(A)3.

We have proved earlier that the homomorphic image of a subgroup is a subgroup
so (f(I),+) is a subgroup of (f(A),+).

To prove that it is an ideal, we show that for any b ∈ f(A) and y ∈ f(I), the products
by and yb are elements of f(I). To do so, let a ∈ A and x ∈ I be such that f(a) = b
and f(x) = y. Then

by = f(a)f(x) = f(ax) and yb = f(x)f(a) = f(xa)

because f is a ring homomorphism and ax, xa ∈ I because I is an ideal so f(I) is an
ideal in f(A).

Remarks:

• Note that the condition on the kernel given by the book was not used in the
proof. To convince yourself that it is not necessary, consider A = Z, B = Z/3Z,
f the natural surjection: f(n) = n mod 3 and I = 2Z.

• In general, f(I) is not an ideal in A. Consider for instance the image of R under
the inclusion map R −→ R[X].

I.2

Assume that f is a surjective morphism f between a ring A and a field B. To prove
that ker f is a maximal ideal in A, we shall prove that any ideal I that strictly con-
tains ker f must contain an invertible element and is therefore equal to A by a result
proven in class.

By the result of the previous question, f(I) is an ideal in B. Since fields have no
non-trivial ideals, f(I) must be {0} or A. Since I contains elements that are not in
ker f , we know that f(I) 6= {0} so f(I) = B.

Let x be an element of I such that x /∈ ker f . Then f(x) 6= 0 so f(x) is invertible in
the field B. Since f(I) = B, the inverse of f(x) belongs to f(I). In other words,

∃x0 ∈ I , f(x0) = f(x)−1.

Note that even though f is a ring homomorphism, there is no reason to assume
that x is invertible and that f(x)−1 = f(x−1)...

3The surjectivity assumption guarantees f(A) = B.
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However, the equation f(x0)f(x) = 1B = f(1A) implies that

f(x0x− 1A) = 0.

In other words, x0x− 1A ∈ ker f ⊂ I . Therefore,

1A = x0x︸︷︷︸
∈I

− (x0x− 1A)︸ ︷︷ ︸
∈I

so 1A ∈ I , which concludes the proof.

N.B. The proof can be made to work in the case where A does not contain an identity
(done in the x-hour).

I.3

Arguing like in F.2 (Chapter 17), we see that all group endomorphisms of Z are of
the form ϕk : n 7→ kn. For such a map to be a ring homomorphism, it is necessary
that

k = ϕk(1) = ϕk(1 · 1) = ϕk(1)ϕk(1) = k2,

which implies that k ∈ {0, 1}. Conversely, one checks that the zero map ϕ0 and the
identity map ϕ1 are ring endomorphisms of Z.

Chapter 19

E.5

Let A be a ring and J and ideal such that every element in A/J is nilpotent. This
means that for every X in A/J , there exists an integer n ≥ 0 such that Xn = 0A/J .
Therefore, if x is an element of A, there exists an integer n such that

[x]n = [xn] = 0A/J .

The representatives of 0A/J are exactly the elements of J , so this implies that xn ∈ J .

The converse holds, by the same type of argument.

F.1

The fact that the quotient of a ring A by an ideal J is a ring has been verified in class.
If A is commutative, the relation [a] · [b] = [a · b], which defines the product on A/J ,
implies that A/J is commutative too. The same relation also implies that if A has an
identity 1A, then [1A] is an identity for A/J .
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F.2

Recall that an ideal J in a ring A is said prime if, for a and b in J

ab ∈ J ⇒ a ∈ J or b ∈ J.

Let J be an ideal in a commutative ring A. Since an element a ∈ A belongs to J if
and only if [a] = 0A/J , if X and Y are elements of A/J , the condition

XY = 0A/J

is equivalent to the fact that
xy ∈ J

for any x, y representatives of X and Y in A. It follows that A/J has zero divisors if
and only if J is not prime.

F.3

If J is a maximal ideal of a commutative ring A, then A/J is a field. In particular,
A/J is an integral domain, which by the result proved in the previous questions,
implies that J is prime.

F.4

To prove that if A/J is field, then J is maximal, it suffices to apply the result proved
in I.2 above to the case of the natural surjection

$ : A −→ A/J
a 7−→ [a]

,

whose kernel is precisely J .
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