Elements of solution for Homework 6

Chapter 17

E1

If (G,+) is an abelian group, then End(G), equipped with pointwise addition is a
subgroup of the additive group of functions from G to itself. The neutral element is
the constant map g — Og and the inverse of © € End(G) is the map —u : g — —u(z).

As for the multiplicative structure, composition is associative on functions from G to
itself and a composition of homomorphisms is a homomorphism so o is an internal
composition law on End(G) for which the identical map g — ¢ is an identity.

To check distributivity, let v, v and w be elements in End(G). Then, for any g € G,

wo (v+w)(g) = u((v+w)(z))

u(v(z) + w(z)) by definition of the addition on End(G)
u(v(z)) +u(w(z)) because uis a morphism

= wov(x)+uow(x)

souo (v+w)=uov+uouw.

Similarly,
(v+w)ou)(g) = (v+w)(u())
= v(u(z)) +w(u(x)) by definition of the addition on End(G)

= wvou(z)+ wou(x)

so' (v+w)ou=vou+wou.

!Notice that the fact that the maps are homomorphisms is not necessary to prove distributivity
on that side.



E2

To determine all the endomorphisms of Z /47, we notice that any homomorphism
from a cyclic group to another group (cyclic or not) is determined by the image of a
generator.

More precisely, if (G, +) = (a), then any element g € G is of the forma+a+ ... +a
or (—a) + (—a) + ...+ (—a), thatis

g=n-a

for some n € Z. Now, if G’ is any group (denoted multiplicatively) and ¢ €
Hom(G, G"), we get

p(9) = p(n-a) = p(a)"
so the knowledge of (a) characterizes ¢.

In the particular case of G = Z/4Z = (1) and G’ = Z/4Z with additive notation, the
previous relation become

() w(n) =ne(l).
For k € {0,1, 2,3}, we will denote by ¢;, the map
7)47 — ZJAZ
n — kn
Then End(Z/4Z) = {0, ¢1, 2, ¢3} and we will prove that the map

7/47 — End(Z/AZ)
k — g

is an isomorphism of rings®. Straightforward calculations show that

Chtk! = P+ Qi and Prk! = Pk © Ph-

To prove bijectivity, one can either prove injectivity and notice that surjectivity fol-
lows from () or verify that the map
End(Z/4Z2) — Z/AZ
g — (1)

is an inverse for the map under study. Therefore, End(Z/4Z) has the same tables as
Z]AZ.

2This generalizes to End(Z/nZ) for any n.



Chapter 18

Al

Use the subgring criterion.

A.6
R — My(R)
Same method. Notice that the map SN [ 0 0 ] is an ring isomorphism.
0 x

B.1

The diagonal subring {(n,n) , n € Z} is a subring of Z x Z but it is not absorbent.

Zx7 — Z/5ZXZ

is a ring homomorphism so its kernel 57 x {0
(@b —  (a],b) 8 P 0

The map {
is an ideal.
The subset {(m,n) , m +n € 2Z} is a subring of Z x Z but it is not absorbent.
The subset {(m,n) , mn € 2Z} of Z x Z is not stable under addition.

ZxZ — 7J2Z xZ/3Z
The ma
P { (a,0) —  ([al.[t])
37 is an ideal.

is a ring homomorphism so its kernel 27Z x

B.5

The product of a continuous function (such as x — 1) with a discontinuous function
need not be continuous so C(R) is not an ideal in F(R).

H.5

Follow the hints of the textbook, keeping in mind that a function is invertible if
and only if it never vanishes. It is ok to use the result of Exercise D.5, which we
established in class.



I1

The more general result is that if f is a ring homomorphism from A to B and I is an
ideal in 4, then f(I) is an ideal in f(A)>.

We have proved earlier that the homomorphic image of a subgroup is a subgroup
so (f(I),+) is a subgroup of (f(A),+).

To prove that it is an ideal, we show that forany b € f(A) and y € f(I), the products
by and yb are elements of f(I). To do so, leta € A and x € I be such that f(a) = b
and f(z) = y. Then

by = f(a)f(z) = flax)  and  yb= f(z)f(a) = f(za)
because f is a ring homomorphism and az, za € I because I is an ideal so f(/) is an
ideal in f(A).
Remarks:
e Note that the condition on the kernel given by the book was not used in the

proof. To convince yourself that it is not necessary, consider A = Z, B = Z/3Z,
f the natural surjection: f(n) =n mod 3 and [ = 2Z.

e Ingeneral, f(I)isnotanideal in A. Consider for instance the image of R under
the inclusion map R — R[X].

I.2

Assume that f is a surjective morphism f between a ring A and a field B. To prove
that ker f is a maximal ideal in A, we shall prove that any ideal [ that strictly con-
tains ker f must contain an invertible element and is therefore equal to A by a result
proven in class.

By the result of the previous question, f(I) is an ideal in B. Since fields have no
non-trivial ideals, f(/) must be {0} or A. Since I contains elements that are not in
ker f, we know that f(I) # {0} so f(I) = B.

Let x be an element of I such that x ¢ ker f. Then f(z) # 0 so f(z) is invertible in
the field B. Since f(I) = B, the inverse of f(x) belongs to f(I). In other words,

dwg €1, f(zg) = f(x)™".

Note that even though f is a ring homomorphism, there is no reason to assume
that z is invertible and that f(z)™' = f(z7)...

3The surjectivity assumption guarantees f(A) = B.
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However, the equation f(zo) f(z) = 15 = f(14) implies that
f(zox —14) = 0.
In other words, zgx — 14 € ker f C I. Therefore,
1a = zox — (zox — 14)
N N
eI el

so 14 € I, which concludes the proof.

N.B. The proof can be made to work in the case where A does not contain an identity
(done in the x-hour).

I.3

Arguing like in E2 (Chapter 17), we see that all group endomorphisms of Z are of
the form ¢y, : n +— kn. For such a map to be a ring homomorphism, it is necessary
that

k= oi(1) = ou(1-1) = or(L)en(1) = K,
which implies that k& € {0, 1}. Conversely, one checks that the zero map ¢, and the
identity map ¢, are ring endomorphisms of Z.

Chapter 19

E.5

Let A be a ring and J and ideal such that every element in A//J is nilpotent. This
means that for every X in A/J, there exists an integer n > 0 such that X" = 0,4,;.
Therefore, if x is an element of A, there exists an integer n such that

[2]" = [2"] = 04/,
The representatives of 04, are exactly the elements of J, so this implies that 2" € J.

The converse holds, by the same type of argument.

E1

The fact that the quotient of a ring A by an ideal J is a ring has been verified in class.
If A is commutative, the relation [a] - [0] = [a - b], which defines the product on A/ J,
implies that A/J is commutative too. The same relation also implies that if A has an
identity 14, then [14] is an identity for A/J.
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E2

Recall that an ideal J in a ring A is said prime if, for a and bin J
abeJ = a€Jorbel

Let J be an ideal in a commutative ring A. Since an element a € A belongs to J if
and only if [a] = 04/, if X and Y are elements of A/J, the condition

XY =04,

is equivalent to the fact that
xy € J

for any x, y representatives of X and Y in A. It follows that A/.J has zero divisors if
and only if J is not prime.

E3

If J is a maximal ideal of a commutative ring A, then A/J is a field. In particular,
A/J is an integral domain, which by the result proved in the previous questions,
implies that J is prime.

F.4

To prove thatif A/J is field, then J is maximal, it suffices to apply the result proved
in 1.2 above to the case of the natural surjection

w:A — AJJ
a +—> [a]

whose kernel is precisely J.



