Elements of solution for Homework 6

Chapter 17

F. 1

If $(G,+)$ is an abelian group, then $\operatorname{End}(G)$, equipped with pointwise addition is a subgroup of the additive group of functions from G to itself. The neutral element is the constant map $g \mapsto 0_{G}$ and the inverse of $u \in \operatorname{End}(G)$ is the map $-u: g \mapsto-u(x)$.

As for the multiplicative structure, composition is associative on functions from G to itself and a composition of homomorphisms is a homomorphism so \circ is an internal composition law on $\operatorname{End}(G)$ for which the identical map $g \mapsto g$ is an identity.
To check distributivity, let u, v and w be elements in $\operatorname{End}(G)$. Then, for any $g \in G$,

$$
\begin{array}{rlrl}
u \circ(v+w)(g) & =u((v+w)(x)) & & \\
& =u(v(x)+w(x)) & & \text { by definition of the addition on } \operatorname{End}(G) \\
& =u(v(x))+u(w(x)) & & \text { because } u \text { is a morphism } \\
& =u \circ v(x)+u \circ w(x) &
\end{array}
$$

so $u \circ(v+w)=u \circ v+u \circ w$.
Similarly,

$$
\begin{aligned}
((v+w) \circ u)(g) & =(v+w)(u(x)) \\
& =v(u(x))+w(u(x)) \quad \text { by definition of the addition on } \operatorname{End}(G) \\
& =v \circ u(x)+w \circ u(x)
\end{aligned}
$$

$\operatorname{so}^{1}(v+w) \circ u=v \circ u+w \circ u$.

[^0]
F. 2

To determine all the endomorphisms of $\mathbb{Z} / 4 \mathbb{Z}$, we notice that any homomorphism from a cyclic group to another group (cyclic or not) is determined by the image of a generator.

More precisely, if $(G,+)=\langle a\rangle$, then any element $g \in G$ is of the form $a+a+\ldots+a$ or $(-a)+(-a)+\ldots+(-a)$, that is

$$
g=n \cdot a
$$

for some $n \in \mathbb{Z}$. Now, if G^{\prime} is any group (denoted multiplicatively) and $\varphi \in$ $\operatorname{Hom}\left(G, G^{\prime}\right)$, we get

$$
\varphi(g)=\varphi(n \cdot a)=\varphi(a)^{n}
$$

so the knowledge of $\varphi(a)$ characterizes φ.
In the particular case of $G=\mathbb{Z} / 4 \mathbb{Z}=\langle 1\rangle$ and $G^{\prime}=\mathbb{Z} / 4 \mathbb{Z}$ with additive notation, the previous relation become

$$
(\dagger) \quad \varphi(n)=n \varphi(1)
$$

For $k \in\{0,1,2,3\}$, we will denote by φ_{k} the map

$$
\begin{aligned}
\mathbb{Z} / 4 \mathbb{Z} & \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \\
n & \longmapsto k n
\end{aligned}
$$

Then $\operatorname{End}(\mathbb{Z} / 4 \mathbb{Z})=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ and we will prove that the map

$$
\begin{aligned}
\mathbb{Z} / 4 \mathbb{Z} & \longrightarrow \operatorname{End}(\mathbb{Z} / 4 \mathbb{Z}) \\
k & \longmapsto \varphi_{k}
\end{aligned}
$$

is an isomorphism of rings ${ }^{2}$. Straightforward calculations show that

$$
\varphi_{k+k^{\prime}}=\varphi_{k}+\varphi_{k^{\prime}} \quad \text { and } \quad \varphi_{k k^{\prime}}=\varphi_{k} \circ \varphi_{k^{\prime}}
$$

To prove bijectivity, one can either prove injectivity and notice that surjectivity follows from (\dagger) or verify that the map

$$
\begin{aligned}
\operatorname{End}(\mathbb{Z} / 4 \mathbb{Z}) & \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \\
\varphi & \longmapsto \varphi(1)
\end{aligned}
$$

is an inverse for the map under study. Therefore, $\operatorname{End}(\mathbb{Z} / 4 \mathbb{Z})$ has the same tables as $\mathbb{Z} / 4 \mathbb{Z}$.

[^1]
Chapter 18

A. 1

Use the subgring criterion.
A. 6

Same method. Notice that the map $\left\{\begin{array}{rll}\mathbb{R} & \longrightarrow & \mathrm{M}_{2}(\mathbb{R}) \\ x & \longmapsto & {\left[\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right] \text { is an ring isomorphism. }}\end{array}\right.$

B. 1

The diagonal subring $\{(n, n), n \in \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$ but it is not absorbent.
The map $\left\{\begin{array}{rlc}\mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} \\ (a, b) & \longmapsto & ([a], b)\end{array}\right.$ is a ring homomorphism so its kernel $5 \mathbb{Z} \times\{0\}$ is an ideal.

The subset $\{(m, n), m+n \in 2 \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$ but it is not absorbent.
The subset $\{(m, n), m n \in 2 \mathbb{Z}\}$ of $\mathbb{Z} \times \mathbb{Z}$ is not stable under addition.
The map $\left\{\begin{array}{rlc}\mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \\ (a, b) & \longmapsto & ([a],[b])\end{array}\right.$ is a ring homomorphism so its kernel $2 \mathbb{Z} \times$ $3 \mathbb{Z}$ is an ideal.

B. 5

The product of a continuous function (such as $x \mapsto 1$) with a discontinuous function need not be continuous so $\mathcal{C}(\mathbb{R})$ is not an ideal in $\mathcal{F}(\mathbb{R})$.

H. 5

Follow the hints of the textbook, keeping in mind that a function is invertible if and only if it never vanishes. It is ok to use the result of Exercise D.5, which we established in class.

I. 1

The more general result is that if f is a ring homomorphism from A to B and I is an ideal in A, then $f(I)$ is an ideal in $f(A)^{3}$.
We have proved earlier that the homomorphic image of a subgroup is a subgroup so $(f(I),+)$ is a subgroup of $(f(A),+)$.
To prove that it is an ideal, we show that for any $b \in f(A)$ and $y \in f(I)$, the products $b y$ and $y b$ are elements of $f(I)$. To do so, let $a \in A$ and $x \in I$ be such that $f(a)=b$ and $f(x)=y$. Then

$$
b y=f(a) f(x)=f(a x) \quad \text { and } \quad y b=f(x) f(a)=f(x a)
$$

because f is a ring homomorphism and $a x, x a \in I$ because I is an ideal so $f(I)$ is an ideal in $f(A)$.

Remarks:

- Note that the condition on the kernel given by the book was not used in the proof. To convince yourself that it is not necessary, consider $A=\mathbb{Z}, B=\mathbb{Z} / 3 \mathbb{Z}$, f the natural surjection: $f(n)=n \bmod 3$ and $I=2 \mathbb{Z}$.
- In general, $f(I)$ is not an ideal in A. Consider for instance the image of \mathbb{R} under the inclusion $\operatorname{map} \mathbb{R} \longrightarrow \mathbb{R}[X]$.

I. 2

Assume that f is a surjective morphism f between a ring A and a field B. To prove that ker f is a maximal ideal in A, we shall prove that any ideal I that strictly contains ker f must contain an invertible element and is therefore equal to A by a result proven in class.

By the result of the previous question, $f(I)$ is an ideal in B. Since fields have no non-trivial ideals, $f(I)$ must be $\{0\}$ or A. Since I contains elements that are not in ker f, we know that $f(I) \neq\{0\}$ so $f(I)=B$.
Let x be an element of I such that $x \notin \operatorname{ker} f$. Then $f(x) \neq 0$ so $f(x)$ is invertible in the field B. Since $f(I)=B$, the inverse of $f(x)$ belongs to $f(I)$. In other words,

$$
\exists x_{0} \in I, f\left(x_{0}\right)=f(x)^{-1}
$$

Note that even though f is a ring homomorphism, there is no reason to assume that x is invertible and that $f(x)^{-1}=f\left(x^{-1}\right) \ldots$

[^2]However, the equation $f\left(x_{0}\right) f(x)=1_{B}=f\left(1_{A}\right)$ implies that

$$
f\left(x_{0} x-1_{A}\right)=0
$$

In other words, $x_{0} x-1_{A} \in \operatorname{ker} f \subset I$. Therefore,

$$
1_{A}=\underbrace{x_{0} x}_{\in I}-\underbrace{\left(x_{0} x-1_{A}\right)}_{\in I}
$$

so $1_{A} \in I$, which concludes the proof.
N.B. The proof can be made to work in the case where A does not contain an identity (done in the x -hour).

I. 3

Arguing like in $\mathbf{F} .2$ (Chapter 17), we see that all group endomorphisms of \mathbb{Z} are of the form $\varphi_{k}: n \mapsto k n$. For such a map to be a ring homomorphism, it is necessary that

$$
k=\varphi_{k}(1)=\varphi_{k}(1 \cdot 1)=\varphi_{k}(1) \varphi_{k}(1)=k^{2},
$$

which implies that $k \in\{0,1\}$. Conversely, one checks that the zero map φ_{0} and the identity map φ_{1} are ring endomorphisms of \mathbb{Z}.

Chapter 19

E. 5

Let A be a ring and J and ideal such that every element in A / J is nilpotent. This means that for every X in A / J, there exists an integer $n \geq 0$ such that $X^{n}=0_{A / J}$. Therefore, if x is an element of A, there exists an integer n such that

$$
[x]^{n}=\left[x^{n}\right]=0_{A / J}
$$

The representatives of $0_{A / J}$ are exactly the elements of J, so this implies that $x^{n} \in J$.
The converse holds, by the same type of argument.

F. 1

The fact that the quotient of a ring A by an ideal J is a ring has been verified in class. If A is commutative, the relation $[a] \cdot[b]=[a \cdot b]$, which defines the product on A / J, implies that A / J is commutative too. The same relation also implies that if A has an identity 1_{A}, then $\left[1_{A}\right]$ is an identity for A / J.

F. 2

Recall that an ideal J in a ring A is said prime if, for a and b in J

$$
a b \in J \quad \Rightarrow \quad a \in J \text { or } b \in J
$$

Let J be an ideal in a commutative ring A. Since an element $a \in A$ belongs to J if and only if $[a]=0_{A / J}$, if X and Y are elements of A / J, the condition

$$
X Y=0_{A / J}
$$

is equivalent to the fact that

$$
x y \in J
$$

for any x, y representatives of X and Y in A. It follows that A / J has zero divisors if and only if J is not prime.

F. 3

If J is a maximal ideal of a commutative ring A, then A / J is a field. In particular, A / J is an integral domain, which by the result proved in the previous questions, implies that J is prime.

F. 4

To prove that if A / J is field, then J is maximal, it suffices to apply the result proved in I. 2 above to the case of the natural surjection

$$
\begin{aligned}
\varpi: A & \longrightarrow A / J \\
a & \longmapsto[a]
\end{aligned}
$$

whose kernel is precisely J.

[^0]: ${ }^{1}$ Notice that the fact that the maps are homomorphisms is not necessary to prove distributivity on that side.

[^1]: ${ }^{2}$ This generalizes to $\operatorname{End}(\mathbb{Z} / n \mathbb{Z})$ for any n.

[^2]: ${ }^{3}$ The surjectivity assumption guarantees $f(A)=B$.

