Elements of solution for Homework 5

General remarks

How to use the First Isomorphism Theorem

A standard way to prove statements of the form G/H is isomorphic to Γ' is to construct a homomorphism $\varphi : G \longrightarrow \Gamma$ such that

- 1. φ is surjective (that is Im $\varphi = \Gamma$)
- 2. ker $\varphi = H$.

Then, the Isomorphism Theorem states that there exists an isomorphism¹ between $G/\ker \varphi = G/H$ and $\operatorname{Im} \varphi = \Gamma$

Left and right cosets

A subgroup *H* of a group *G* is normal if $ghg^{-1} \in H$ for every $g \in G$ and $h \in H$. This condition can be rephrased as

$$qHg^{-1} = H$$

which in turn is equivalent to having gH = Hg for every $g \in G$. In other words, if $H \triangleleft G$, then for every $g \in G$ and every $h \in H$, there exist h' and h'' in H such that

$$gh = h'g$$
 and $hg = gh''$.

Neutral element in a quotient

If *H* is a normal subgroup of a group *G*, the neutral element of G/H is the class modulo *H* of the neutral element of *G*:

$$e_{G/H} = [e_G] = e_G H = \{e_G h, h \in H\} = H.$$

¹Namely the homomorphism $\tilde{\varphi}$ induced by φ and defined by $\tilde{\varphi}(gH) = \varphi(g)$.

Chapter 15

A.1

For $n \in \mathbb{Z}$, we denote by [n] the class of n modulo 10^2 . Then, with

$$H = \{[0], [5]\} < \mathbb{Z}/10\mathbb{Z},$$

the cosets are of the form

$$\bar{n} := [n] + H = \{[n], [n] + [5]\} = \{[n], [n+5]\}.$$

So a list of the elements in G/H is

 $\bar{0} = \bar{5}$, $\bar{1} = \bar{6}$, $\bar{2} = \bar{7}$, $\bar{3} = \bar{8}$, $\bar{4} = \bar{9}$.

To prove that G/H is isomorphic to $\mathbb{Z}/5\mathbb{Z}$, a concrete way is to verify that the map sending \bar{n} to the class of n modulo 5 is an isomorphism. An abstract way is to recall that if p is prime (e.g. p = 5), all groups of order p are isomorphic (and cyclic).

A.2

Observe that $H = \{ Id, (123), (132) \}$ is the alternating subgroup \mathfrak{A}_3 of $G = \mathfrak{S}_3$.

Since |G| = 6 and |H| = 3, Lagrange's Theorem predicts that the number of classes is

$$[G:H] = \frac{|G|}{|H|} = 2.$$

One class has to be IdH = H, neutral element of G/H and the other has to be the complement, namely $T = \{(1 \ 2), (1 \ 3), (2 \ 3)\}$. This group is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

A.5

The subgroup *H* generated by (0,1) in $G = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has two elements: (0,1) and (0,1) + (0,1) = (0,0).

Therefore, if $(a, b) \in G$, its class modulo H consists of (a, b) and (a, b + 1). There are four such classes, determined by the value of a.

²A representative of this class is the last digit of n.

There exist two non-isomorphic groups of order 4, namely $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}^3$. To see that G/H is isomorphic to $\mathbb{Z}/4\mathbb{Z}$, one can either write down the table or observe that the map

$$\begin{array}{cccc} G & \longrightarrow & \mathbb{Z}/4\mathbb{Z} \\ (a,b) & \longmapsto & a \end{array}$$

is a surjective homomorphism with kernel *H* and apply the isomorphism Theorem.

Notation: in all subsequent problems, the class of an element $x \in G$ in a quotient G/H will be denoted by [x].

C.1

Let *H* be a subgroup of a group *G*. Assume that $x^2 \in H$ for every $x \in G$ and let *A* be an element of G/H. Then if *a* is a representative of *A* in *G*, that is, A = [a], we have

$$A \cdot A = [a] \cdot [a] = [a^2] = H = e_{G/H}$$

which exactly means that *A* is its own inverse.

Conversely, assume that every element of G/H is its own inverse. It follows that $[x] \cdot [x] = e_{G/H}$ for every $x \in G$. In other words, $[x^2] = H$ which exactly means that $x^2 \in H$ for every element $x \in G$.

C.5

Let *H* be a subgroup of a group *G*. Assume that G/H is cyclic. This means that there exists and element $A \in G/H$ such that $G/H = \langle A \rangle$. In other words, every element $X \in G/H$ is of the form A^n with $n \in \mathbb{Z}$.

Therefore, if *a* is a representative of *A* in *G* and *x* is any element of *G*, there exists an integer $n_0 \in \mathbb{Z}$ such that

$$[x] = [a]^{n_0} = [a^{n_0}].$$

This exactly means that x and a^{n_0} are equivalent modulo H, which translates as $xa^{-n_0} \in H$. Let $n = -n_0$ to recover the statement expected in the book.

Conversely, assume the existence of an element a in G such that for every element $x \in G$, there exists an integer n such that $xa^n \in H$.

For $X \in G/H$, let x be a representative of X. Then the hypothesis implies that

$$X \cdot [a]^n = [x] \cdot [a]^n = [xa^n] = H = e_{G/H}$$

It follows that $X = [a^{-1}]^n$ so $[a^{-1}]$ generates G/H, which is therefore cyclic⁴.

³This group, in which every element has order 2, is called <u>Klein's group</u> and denoted by V_4 . ⁴Note that [a] and $[a^{-1}] = [a]^{-1}$ generate the same subgroup of G/H.

F.1 to F.4

Let *G* be a group and *C* its center. Recall that $C \triangleleft G$ in general and assume that G/C is cyclic, generated for instance by $A \in G/C$.

As in **C.5**, if $x \in G$ and a is a representative of A in G, there exists an integer m such that $[x] = [a]^m$ which implies that the equality of cosets

$$Cx = Ca^m$$
.

A reformulation of this is the fact that x and a^m are equivalent modulo C, that is, $x(a^m)^{-1} \in C$, which is equivalent to the existence of $c \in C$ such that $x(a^m)^{-1} = c$, or

$$x = ca^m$$
.

To prove that *G* is abelian, let *x* and *y* be elements of *G*. It follows from what we just did that

$$x = ca^m$$
 and $y = c'a^{m'}$

for some $c, c' \in C$ and $m, m' \in \mathbb{Z}$. Then,

$$\begin{aligned} xx' &= ca^m c'a^{m'} \\ &= c'(ca^m)a^{m'} & \text{because } c' \in C \\ &= c'ca^{m+m'} = c'ca^{m'}a^m & \text{by associativity} \\ &= c'a^{m'}ca^m & \text{because } c \in C \\ &= x'x, \end{aligned}$$

which shows that the multiplication in *G* is commutative.

Chapter 16

A.3

With the notation of Problem A.2 in Chapter 15, we want to verify that $\mathfrak{S}_3/\mathfrak{A}_3$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. The method actually works for $\mathfrak{S}_n/\mathfrak{A}_n$ with *n* arbitrary.

Consider the signature homomorphism

$$\varepsilon: \mathfrak{S}_n \longrightarrow (\{-1,1\}, \times)$$

the isomorphism

$$\begin{split} \iota: (\{-1,1\},\times) &\longrightarrow (\mathbb{Z}/2\mathbb{Z},+) \\ 1 &\longmapsto 0 \\ -1 &\longmapsto 1 \end{split}$$

The composition

$$\iota \circ \varepsilon : \mathfrak{S}_n \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

maps even permutations to 0 and odd permutations to 1. It is a surjective homomorphism with kernel \mathfrak{A}_n . The result then follows from the First Isomorphism Theorem.

A.5

Let $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and H the diagonal subgroup $\{(a, a), a \in \mathbb{Z}/3\mathbb{Z}\}$. As suggested, consider the map

$$\begin{array}{rccc} f: & G & \longrightarrow & \mathbb{Z}/3\mathbb{Z} \\ & (a,b) & \longmapsto & a-b \end{array}$$

For any $a, b, a', b' \in \mathbb{Z}/3\mathbb{Z}$,

$$f((a, b) + (a', b')) = f(a + a', b + b')$$

= $a + a' - (b + b')$
= $a - b + a' - b'$
= $f((a, b)) + f((a', b'))$

so f is a homomorphism. It is surjective since every $a \in \mathbb{Z}/3\mathbb{Z}$ is the image under f of the couple (a, 0). In addition, the kernel of f is the set of couples (a, b) such that a - b = 0, which is exactly H. Therefore, by the First Isomorphism Theorem, f induces an isomorphism from G/H to $\mathbb{Z}/3\mathbb{Z}$.

D

Let *G* be a group. By Aut(G), we mean the set of isomorphisms from *G* to itself, that is the set of bijective homomorphisms (*automorphisms*) from *G* to itself:

$$\operatorname{Aut}(G) = \operatorname{Hom}(G, G) \cap \operatorname{Bij}(G).$$

Automorphisms form by definition a subset of the group $(Bij(G), \circ)$. We shall prove that Aut(G) is in fact a subgroup of Bij(G). Note that the map $Id : g \mapsto g$ is an automorphism so that Aut(G) is not empty.

Let $u, v \in Aut(G)$. Then $u \circ v$ is bijective as a composition of bijections. To verify that that $u \circ v$ is a homomorphism, let $g, g' \in G$. Then

$$\begin{array}{rcl} u \circ v(gg') &=& u(v(gg')) \\ &=& u(v(g)v(g')) & \text{because } v \text{ is a homomorphism} \\ &=& u(v(g)) \ u(v(g')) & \text{because } u \text{ is a homomorphism} \\ &=& u \circ v(g) \ u \circ v(g'). \end{array}$$

Finally, we prove that Aut(G) is stable under taking inverses. Every $u \in Aut(G)$ has an inverse u^{-1} in Bij(G). We want to prove that u^{-1} is a homomorphism, that is

(†)
$$u^{-1}(gg') = u^{-1}(g)u^{-1}(g')$$

for every $g, g' \in G$. By definition of inverse maps, $u^{-1}(gg')$ is the *unique* element of G that is mapped to gg' by u. Therefore, to prove (\dagger) , it suffices to prove that the image of the right-hand side by u is gg'. Since u is a homomorphism, we get

$$u\left(u^{-1}(g)u^{-1}(g')\right) = \underbrace{u\left(u^{-1}(g)\right)}_{=g} \underbrace{u\left(u^{-1}(g')\right)}_{=g'}$$

hence the result.

Let us fix an element *a* in *G*. Then, the associated conjugation map

$$\begin{array}{cccc} \varphi_a:G & \longrightarrow & G \\ g & \longmapsto & aga^{-1} \end{array}$$

is an automorphism:

• for $g, g' \in G$,

$$\varphi_a(gg') = agg'a^{-1} = ag\underbrace{a^{-1}a}_{=e_G}g'a^{-1} - = \varphi_a(g)\varphi_a(g').$$

• Injectivity:

$$\varphi_a(g) = e_G \Leftrightarrow aga^{-1} = e_G \Leftrightarrow g = a^{-1}e_G a = e_G$$

so ker $\varphi_a = \{e_G\}.$

• Surjectivity: for $h \in G$,

$$\varphi_a(a^{-1}ha) = aa^{-1}haa^{-1} = h.$$

N.B. The proof of surjectivity also shows that $(\varphi_a)^{-1} = \varphi_{a^{-1}}$.

Automorphisms of the form φ_a are called *inner*. We shall prove that the set Inn(G) of inner automorphisms is a subgroup of Aut(G). We know that the image of a group homomorphism is a subgroup of the target group, so it suffices to prove that the map

$$\begin{array}{ccc} h:G & \longrightarrow & \operatorname{Aut}(G) \\ a & \longmapsto & \varphi_a \end{array}$$

is a group homomorphism to get Inn(G) = Im h < Aut(G).

Let $a, b \in G$. For every $g \in G$,

$$h(ab)(g) = \varphi_{ab}(g)$$

= $(ab)g(ab)^{-1}$
= $abgb^{-1}a^{-1}$
= $a\varphi_b(g)a^{-1}$
= $\varphi_a(\varphi_b(g))$
= $\varphi_a \circ \varphi_b(g)$
= $h(a) \circ h(b)(g).$

Therefore $h(ab) = h(a) \circ h(b)$ and $h \in Hom(G, Aut(G))$.

Since Inn(G) = Im h by definition, the First Isomorphism Theorem implies that Inn(G) is isomorphic to $G/\ker h$.

The kernel of *h* is the set of elements $a \in G$ such that $\varphi_a = \text{Id}$, that is, the elements *a* such that $aga^{-1} = g$ for all $g \in G$. Left multiplying by a^{-1} , we see that *a* is in ker *h* if and only if *a* is in the center $\mathcal{Z}(G)$ of *G*.

As a conclusion,

$$\operatorname{Aut}(G) > \operatorname{Inn}(G) \simeq G/\mathcal{Z}(G).$$