Elements of solution for Homework 5

General remarks

How to use the First Isomorphism Theorem

A standard way to prove statements of the form ' G / H is isomorphic to Γ^{\prime} is to construct a homomorphism $\varphi: G \longrightarrow \Gamma$ such that

1. φ is surjective (that is $\operatorname{Im} \varphi=\Gamma$)
2. $\operatorname{ker} \varphi=H$.

Then, the Isomorphism Theorem states that there exists an isomorphism ${ }^{1}$ between $G / \operatorname{ker} \varphi=G / H$ and $\operatorname{Im} \varphi=\Gamma$

Left and right cosets

A subgroup H of a group G is normal if $g h g^{-1} \in H$ for every $g \in G$ and $h \in H$. This condition can be rephrased as

$$
g H g^{-1}=H
$$

which in turn is equivalent to having $g H=H g$ for every $g \in G$. In other words, if $H \triangleleft G$, then for every $g \in G$ and every $h \in H$, there exist h^{\prime} and $h^{\prime \prime}$ in H such that

$$
g h=h^{\prime} g \quad \text { and } \quad h g=g h^{\prime \prime} .
$$

Neutral element in a quotient

If H is a normal subgroup of a group G, the neutral element of G / H is the class modulo H of the neutral element of G :

$$
e_{G / H}=\left[e_{G}\right]=e_{G} H=\left\{e_{G} h, h \in H\right\}=H .
$$

[^0]
Chapter 15

A. 1

For $n \in \mathbb{Z}$, we denote by $[n]$ the class of n modulo 10^{2}. Then, with

$$
H=\{[0],[5]\}<\mathbb{Z} / 10 \mathbb{Z}
$$

the cosets are of the form

$$
\bar{n}:=[n]+H=\{[n],[n]+[5]\}=\{[n],[n+5]\} .
$$

So a list of the elements in G / H is

$$
\overline{0}=\overline{5} \quad, \quad \overline{1}=\overline{6} \quad, \quad \overline{2}=\overline{7} \quad, \quad \overline{3}=\overline{8} \quad, \quad \overline{4}=\overline{9} .
$$

To prove that G / H is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$, a concrete way is to verify that the map sending \bar{n} to the class of n modulo 5 is an isomorphism. An abstract way is to recall that if p is prime (e.g. $p=5$), all groups of order p are isomorphic (and cyclic).

A. 2

Observe that $H=\{\operatorname{Id},(123),(132)\}$ is the alternating subgroup \mathfrak{A}_{3} of $G=\mathfrak{S}_{3}$.
Since $|G|=6$ and $|H|=3$, Lagrange's Theorem predicts that the number of classes is

$$
[G: H]=\frac{|G|}{|H|}=2
$$

One class has to be $\operatorname{Id} H=H$, neutral element of G / H and the other has to be the complement, namely $T=\{(12),(13),(23)\}$. This group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

A. 5

The subgroup H generated by $(0,1)$ in $G=\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ has two elements: $(0,1)$ and $(0,1)+(0,1)=(0,0)$.

Therefore, if $(a, b) \in G$, its class modulo H consists of (a, b) and $(a, b+1)$. There are four such classes, determined by the value of a.

[^1]There exist two non-isomorphic groups of order 4 , namely $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}^{3}$. To see that G / H is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$, one can either write down the table or observe that the map

$$
\begin{array}{ccc}
G & \longrightarrow & \mathbb{Z} / 4 \mathbb{Z} \\
(a, b) & \longmapsto & a
\end{array}
$$

is a surjective homomorphism with kernel H and apply the isomorphism Theorem.
Notation: in all subsequent problems, the class of an element $x \in G$ in a quotient G / H will be denoted by $[x]$.

C. 1

Let H be a subgroup of a group G. Assume that $x^{2} \in H$ for every $x \in G$ and let A be an element of G / H. Then if a is a representative of A in G, that is, $A=[a]$, we have

$$
A \cdot A=[a] \cdot[a]=\left[a^{2}\right]=H=e_{G / H}
$$

which exactly means that A is its own inverse.
Conversely, assume that every element of G / H is its own inverse. It follows that $[x] \cdot[x]=e_{G / H}$ for every $x \in G$. In other words, $\left[x^{2}\right]=H$ which exactly means that $x^{2} \in H$ for every element $x \in G$.

C. 5

Let H be a subgroup of a group G. Assume that G / H is cyclic. This means that there exists and element $A \in G / H$ such that $G / H=\langle A\rangle$. In other words, every element $X \in G / H$ is of the form A^{n} with $n \in \mathbb{Z}$.
Therefore, if a is a representative of A in G and x is any element of G, there exists an integer $n_{0} \in \mathbb{Z}$ such that

$$
[x]=[a]^{n_{0}}=\left[a^{n_{0}}\right] .
$$

This exactly means that x and $a^{n_{0}}$ are equivalent modulo H, which translates as $x a^{-n_{0}} \in H$. Let $n=-n_{0}$ to recover the statement expected in the book.

Conversely, assume the existence of an element a in G such that for every element $x \in G$, there exists an integer n such that $x a^{n} \in H$.
For $X \in G / H$, let x be a representative of X. Then the hypothesis implies that

$$
X \cdot[a]^{n}=[x] \cdot[a]^{n}=\left[x a^{n}\right]=H=e_{G / H} .
$$

It follows that $X=\left[a^{-1}\right]^{n}$ so $\left[a^{-1}\right]$ generates G / H, which is therefore cyclic ${ }^{4}$.

[^2]
F. 1 to F. 4

Let G be a group and C its center. Recall that $C \triangleleft G$ in general and assume that G / C is cyclic, generated for instance by $A \in G / C$.

As in C.5, if $x \in G$ and a is a representative of A in G, there exists an integer m such that $[x]=[a]^{m}$ which implies that the equality of cosets

$$
C x=C a^{m} .
$$

A reformulation of this is the fact that x and a^{m} are equivalent modulo C, that is, $x\left(a^{m}\right)^{-1} \in C$, which is equivalent to the existence of $c \in C$ such that $x\left(a^{m}\right)^{-1}=c$, or

$$
x=c a^{m} .
$$

To prove that G is abelian, let x and y be elements of G. It follows from what we just did that

$$
x=c a^{m} \quad \text { and } \quad y=c^{\prime} a^{m^{\prime}}
$$

for some $c, c^{\prime} \in C$ and $m, m^{\prime} \in \mathbb{Z}$. Then,

$$
\begin{aligned}
x x^{\prime} & =c a^{m} c^{\prime} a^{m^{\prime}} & & \\
& =c^{\prime}\left(c a^{m}\right) a^{m^{\prime}} & & \text { because } c^{\prime} \in C \\
& =c^{\prime} c a^{m+m^{\prime}}=c^{\prime} c a^{m^{\prime}} a^{m} & & \text { by associativity } \\
& =c^{\prime} a^{m^{\prime}} c a^{m} & & \text { because } c \in C \\
& =x^{\prime} x, & &
\end{aligned}
$$

which shows that the multiplication in G is commutative.

Chapter 16

A. 3

With the notation of Problem A. 2 in Chapter 15, we want to verify that $\mathfrak{S}_{3} / \mathfrak{A}_{3}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. The method actually works for $\mathfrak{S}_{n} / \mathfrak{A}_{n}$ with n arbitrary.

Consider the signature homomorphism

$$
\varepsilon: \mathfrak{S}_{n} \longrightarrow(\{-1,1\}, \times)
$$

the isomorphism

$$
\begin{aligned}
\iota:(\{-1,1\}, \times) & \longrightarrow(\mathbb{Z} / 2 \mathbb{Z},+) \\
1 & \longmapsto 0 \\
-1 & \longmapsto 1
\end{aligned}
$$

The composition

$$
\iota \circ \varepsilon: \mathfrak{S}_{n} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

maps even permutations to 0 and odd permutations to 1 . It is a surjective homomorphism with kernel \mathfrak{A}_{n}. The result then follows from the First Isomorphism Theorem.

A. 5

Let $G=\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and H the diagonal subgroup $\{(a, a), a \in \mathbb{Z} / 3 \mathbb{Z}\}$. As suggested, consider the map

$$
\begin{aligned}
& f: \longrightarrow \\
&(a, b) \longmapsto \mathbb{Z} / 3 \mathbb{Z} \\
& \longmapsto a-b
\end{aligned} .
$$

For any $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z} / 3 \mathbb{Z}$,

$$
\begin{aligned}
f\left((a, b)+\left(a^{\prime}, b^{\prime}\right)\right) & =f\left(a+a^{\prime}, b+b^{\prime}\right) \\
& =a+a^{\prime}-\left(b+b^{\prime}\right) \\
& =a-b+a^{\prime}-b^{\prime} \\
& =f((a, b))+f\left(\left(a^{\prime}, b^{\prime}\right)\right)
\end{aligned}
$$

so f is a homomorphism. It is surjective since every $a \in \mathbb{Z} / 3 \mathbb{Z}$ is the image under f of the couple $(a, 0)$. In addition, the kernel of f is the set of couples (a, b) such that $a-b=0$, which is exactly H. Therefore, by the First Isomorphism Theorem, f induces an isomorphism from G / H to $\mathbb{Z} / 3 \mathbb{Z}$.

D

Let G be a group. By $\operatorname{Aut}(G)$, we mean the set of isomorphisms from G to itself, that is the set of bijective homomorphisms (automorphisms) from G to itself:

$$
\operatorname{Aut}(G)=\operatorname{Hom}(G, G) \cap \operatorname{Bij}(G)
$$

Automorphisms form by definition a subset of the group $(\operatorname{Bij}(G), \circ)$. We shall prove that $\operatorname{Aut}(G)$ is in fact a subgroup of $\operatorname{Bij}(G)$. Note that the the map Id : $g \longmapsto g$ is an automorphism so that $\operatorname{Aut}(G)$ is not empty.
Let $u, v \in \operatorname{Aut}(G)$. Then $u \circ v$ is bijective as a composition of bijections. To verify that that $u \circ v$ is a homomorphism, let $g, g^{\prime} \in G$. Then

$$
\begin{array}{rlrl}
u \circ v\left(g g^{\prime}\right) & =u\left(v\left(g g^{\prime}\right)\right) & & \\
& =u\left(v(g) v\left(g^{\prime}\right)\right) & & \text { because } v \text { is a homomorphism } \\
& =u(v(g)) u\left(v\left(g^{\prime}\right)\right) & & \text { because } u \text { is a homomorphism } \\
& =u \circ v(g) u \circ v\left(g^{\prime}\right) . &
\end{array}
$$

Finally, we prove that $\operatorname{Aut}(G)$ is stable under taking inverses. Every $u \in \operatorname{Aut}(G)$ has an inverse u^{-1} in $\operatorname{Bij}(G)$. We want to prove that u^{-1} is a homomorphism, that is

$$
u^{-1}\left(g g^{\prime}\right)=u^{-1}(g) u^{-1}\left(g^{\prime}\right)
$$

for every $g, g^{\prime} \in G$. By definition of inverse maps, $u^{-1}\left(g g^{\prime}\right)$ is the unique element of G that is mapped to $g g^{\prime}$ by u. Therefore, to prove (\dagger), it suffices to prove that the image of the right-hand side by u is $g g^{\prime}$. Since u is a homomorphism, we get

$$
u\left(u^{-1}(g) u^{-1}\left(g^{\prime}\right)\right)=\underbrace{u\left(u^{-1}(g)\right)}_{=g} \underbrace{u\left(u^{-1}\left(g^{\prime}\right)\right)}_{=g^{\prime}}
$$

hence the result.
Let us fix an element a in G. Then, the associated conjugation map

$$
\begin{aligned}
\varphi_{a}: G & \longrightarrow G \\
g & \longmapsto a g a^{-1}
\end{aligned}
$$

is an automorphism:

- for $g, g^{\prime} \in G$,

$$
\varphi_{a}\left(g g^{\prime}\right)=a g g^{\prime} a^{-1}=a g \underbrace{a^{-1} a}_{=e_{G}} g^{\prime} a^{-1}-=\varphi_{a}(g) \varphi_{a}\left(g^{\prime}\right) .
$$

- Injectivity:

$$
\varphi_{a}(g)=e_{G} \Leftrightarrow a g a^{-1}=e_{G} \Leftrightarrow g=a^{-1} e_{G} a=e_{G}
$$

so $\operatorname{ker} \varphi_{a}=\left\{e_{G}\right\}$.

- Surjectivity: for $h \in G$,

$$
\varphi_{a}\left(a^{-1} h a\right)=a a^{-1} h a a^{-1}=h .
$$

N.B. The proof of surjectivity also shows that $\left(\varphi_{a}\right)^{-1}=\varphi_{a^{-1}}$.

Automorphisms of the form φ_{a} are called inner. We shall prove that the set $\operatorname{Inn}(G)$ of inner automorphisms is a subgroup of $\operatorname{Aut}(G)$. We know that the image of a group homomorphism is a subgroup of the target group, so it suffices to prove that the map

$$
\begin{array}{rlc}
h: G & \longrightarrow & \operatorname{Aut}(G) \\
a & \longmapsto \varphi_{a}
\end{array}
$$

is a group homomorphism to get $\operatorname{Inn}(G)=\operatorname{Im} h<\operatorname{Aut}(G)$.

Let $a, b \in G$. For every $g \in G$,

$$
\begin{aligned}
h(a b)(g) & =\varphi_{a b}(g) \\
& =(a b) g(a b)^{-1} \\
& =a b g b^{-1} a^{-1} \\
& =a \varphi_{b}(g) a^{-1} \\
& =\varphi_{a}\left(\varphi_{b}(g)\right) \\
& =\varphi_{a} \circ \varphi_{b}(g) \\
& =h(a) \circ h(b)(g) .
\end{aligned}
$$

Therefore $h(a b)=h(a) \circ h(b)$ and $h \in \operatorname{Hom}(G, \operatorname{Aut}(G))$.
Since $\operatorname{Inn}(G)=\operatorname{Im} h$ by definition, the First Isomorphism Theorem implies that $\operatorname{Inn}(G)$ is isomorphic to $G / \operatorname{ker} h$.
The kernel of h is the set of elements $a \in G$ such that $\varphi_{a}=\mathrm{Id}$, that is, the elements a such that $a g a^{-1}=g$ for all $g \in G$. Left multiplying by a^{-1}, we see that a is in ker h if and only if a is in the center $\mathcal{Z}(G)$ of G.

As a conclusion,

$$
\operatorname{Aut}(G)>\operatorname{Inn}(G) \simeq G / \mathcal{Z}(G)
$$

[^0]: ${ }^{1}$ Namely the homomorphism $\tilde{\varphi}$ induced by φ and defined by $\tilde{\varphi}(g H)=\varphi(g)$.

[^1]: ${ }^{2} \mathrm{~A}$ representative of this class is the last digit of n.

[^2]: ${ }^{3}$ This group, in which every element has order 2, is called Klein's group and denoted by V_{4}.
 ${ }^{4}$ Note that $[a]$ and $\left[a^{-1}\right]=[a]^{-1}$ generate the same subgroup of G / H.

