
Elements of solution for Homework 5

General remarks

How to use the First Isomorphism Theorem

A standard way to prove statements of the form ‘G/H is isomorphic to Γ’ is to con-
struct a homomorphism ϕ : G −→ Γ such that

1. ϕ is surjective (that is Imϕ = Γ)

2. kerϕ = H .

Then, the Isomorphism Theorem states that there exists an isomorphism1 between
G/ kerϕ = G/H and Imϕ = Γ

Left and right cosets

A subgroup H of a group G is normal if ghg−1 ∈ H for every g ∈ G and h ∈ H . This
condition can be rephrased as

gHg−1 = H

which in turn is equivalent to having gH = Hg for every g ∈ G. In other words, if
H / G, then for every g ∈ G and every h ∈ H , there exist h′ and h′′ in H such that

gh = h′g and hg = gh′′.

Neutral element in a quotient

If H is a normal subgroup of a group G, the neutral element of G/H is the class
modulo H of the neutral element of G:

eG/H = [eG] = eGH = {eGh , h ∈ H} = H.

1Namely the homomorphism ϕ̃ induced by ϕ and defined by ϕ̃(gH) = ϕ(g).
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Chapter 15

A.1

For n ∈ Z, we denote by [n] the class of n modulo 102. Then, with

H = {[0], [5]} < Z/10Z,

the cosets are of the form

n̄ := [n] +H = {[n], [n] + [5]} = {[n], [n+ 5]} .

So a list of the elements in G/H is

0̄ = 5̄ , 1̄ = 6̄ , 2̄ = 7̄ , 3̄ = 8̄ , 4̄ = 9̄.

To prove that G/H is isomorphic to Z/5Z, a concrete way is to verify that the map
sending n̄ to the class of n modulo 5 is an isomorphism. An abstract way is to recall
that if p is prime (e.g. p = 5), all groups of order p are isomorphic (and cyclic ).

A.2

Observe that H = {Id, (1 2 3), (1 3 2)} is the alternating subgroup A3 of G = S3.

Since |G| = 6 and |H| = 3, Lagrange’s Theorem predicts that the number of classes
is

[G : H] =
|G|
|H|

= 2.

One class has to be IdH = H , neutral element of G/H and the other has to be the
complement, namely T = {(1 2), (1 3), (2 3)}. This group is isomorphic to Z/2Z.

A.5

The subgroup H generated by (0, 1) in G = Z/4Z × Z/2Z has two elements: (0, 1)
and (0, 1) + (0, 1) = (0, 0).

Therefore, if (a, b) ∈ G, its class modulo H consists of (a, b) and (a, b + 1). There are
four such classes, determined by the value of a.

2A representative of this class is the last digit of n.
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There exist two non-isomorphic groups of order 4, namely Z/4Z and Z/2Z×Z/2Z3.
To see that G/H is isomorphic to Z/4Z, one can either write down the table or ob-
serve that the map

G −→ Z/4Z
(a, b) 7−→ a

is a surjective homomorphism with kernel H and apply the isomorphism Theorem.

Notation: in all subsequent problems, the class of an element x ∈ G in a quotient
G/H will be denoted by [x].

C.1

Let H be a subgroup of a group G. Assume that x2 ∈ H for every x ∈ G and let A be
an element of G/H . Then if a is a representative of A in G, that is, A = [a], we have

A · A = [a] · [a] = [a2] = H = eG/H

which exactly means that A is its own inverse.

Conversely, assume that every element of G/H is its own inverse. It follows that
[x] · [x] = eG/H for every x ∈ G. In other words, [x2] = H which exactly means that
x2 ∈ H for every element x ∈ G.

C.5

LetH be a subgroup of a groupG. Assume thatG/H is cyclic. This means that there
exists and element A ∈ G/H such that G/H = 〈A〉. In other words, every element
X ∈ G/H is of the form An with n ∈ Z.

Therefore, if a is a representative of A in G and x is any element of G, there exists an
integer n0 ∈ Z such that

[x] = [a]n0 = [an0 ].

This exactly means that x and an0 are equivalent modulo H , which translates as
xa−n0 ∈ H . Let n = −n0 to recover the statement expected in the book.

Conversely, assume the existence of an element a in G such that for every element
x ∈ G, there exists an integer n such that xan ∈ H .
For X ∈ G/H , let x be a representative of X . Then the hypothesis implies that

X · [a]n = [x] · [a]n = [xan] = H = eG/H .

It follows that X = [a−1]n so [a−1] generates G/H , which is therefore cyclic4.
3This group, in which every element has order 2, is called Klein’s group and denoted by V4.
4Note that [a] and [a−1] = [a]−1 generate the same subgroup of G/H .
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F.1 to F.4

Let G be a group and C its center. Recall that C /G in general and assume that G/C
is cyclic, generated for instance by A ∈ G/C.

As in C.5, if x ∈ G and a is a representative of A in G, there exists an integer m such
that [x] = [a]m which implies that the equality of cosets

Cx = Cam.

A reformulation of this is the fact that x and am are equivalent modulo C, that is,
x(am)−1 ∈ C, which is equivalent to the existence of c ∈ C such that x(am)−1 = c, or

x = cam.

To prove that G is abelian, let x and y be elements of G. It follows from what we just
did that

x = cam and y = c′am
′

for some c, c′ ∈ C and m,m′ ∈ Z. Then,

xx′ = camc′am
′

= c′(cam)am
′ because c′ ∈ C

= c′cam+m′ = c′cam
′
am by associativity

= c′am
′
cam because c ∈ C

= x′x,

which shows that the multiplication in G is commutative.

Chapter 16

A.3

With the notation of Problem A.2 in Chapter 15, we want to verify that S3/A3 is
isomorphic to Z/2Z. The method actually works for Sn/An with n arbitrary.

Consider the signature homomorphism

ε : Sn −→ ({−1, 1},×)

the isomorphism
ι : ({−1, 1},×) −→ (Z/2Z,+)

1 7−→ 0
−1 7−→ 1

.
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The composition
ι ◦ ε : Sn −→ Z/2Z

maps even permutations to 0 and odd permutations to 1. It is a surjective homomor-
phism with kernel An. The result then follows from the First Isomorphism Theorem.

A.5

LetG = Z/3Z×Z/3Z andH the diagonal subgroup {(a, a), a ∈ Z/3Z}. As suggested,
consider the map

f : G −→ Z/3Z
(a, b) 7−→ a− b .

For any a, b, a′, b′ ∈ Z/3Z,

f((a, b) + (a′, b′)) = f(a+ a′, b+ b′)

= a+ a′ − (b+ b′)

= a− b+ a′ − b′

= f((a, b)) + f((a′, b′))

so f is a homomorphism. It is surjective since every a ∈ Z/3Z is the image under
f of the couple (a, 0). In addition, the kernel of f is the set of couples (a, b) such
that a − b = 0, which is exactly H . Therefore, by the First Isomorphism Theorem, f
induces an isomorphism from G/H to Z/3Z.

D

Let G be a group. By Aut(G), we mean the set of isomorphisms from G to itself, that
is the set of bijective homomorphisms (automorphisms) from G to itself:

Aut(G) = Hom(G,G) ∩ Bij(G).

Automorphisms form by definition a subset of the group (Bij(G), ◦). We shall prove
that Aut(G) is in fact a subgroup of Bij(G). Note that the the map Id : g 7−→ g is an
automorphism so that Aut(G) is not empty.
Let u, v ∈ Aut(G). Then u◦v is bijective as a composition of bijections. To verify that
that u ◦ v is a homomorphism, let g, g′ ∈ G. Then

u ◦ v(gg′) = u(v(gg′))
= u(v(g)v(g′)) because v is a homomorphism
= u(v(g)) u(v(g′)) because u is a homomorphism
= u ◦ v(g) u ◦ v(g′).
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Finally, we prove that Aut(G) is stable under taking inverses. Every u ∈ Aut(G) has
an inverse u−1 in Bij(G). We want to prove that u−1 is a homomorphism, that is

(†) u−1(gg′) = u−1(g)u−1(g′)

for every g, g′ ∈ G. By definition of inverse maps, u−1(gg′) is the unique element of G
that is mapped to gg′ by u. Therefore, to prove (†), it suffices to prove that the image
of the right-hand side by u is gg′. Since u is a homomorphism, we get

u
(
u−1(g)u−1(g′)

)
= u

(
u−1(g)

)︸ ︷︷ ︸
=g

u
(
u−1(g′)

)︸ ︷︷ ︸
=g′

hence the result.

Let us fix an element a in G. Then, the associated conjugation map

ϕa : G −→ G
g 7−→ aga−1

is an automorphism:

• for g, g′ ∈ G,

ϕa(gg
′) = agg′a−1 = ag a−1a︸︷︷︸

=eG

g′a−1− = ϕa(g)ϕa(g
′).

• Injectivity:
ϕa(g) = eG ⇔ aga−1 = eG ⇔ g = a−1eGa = eG

so kerϕa = {eG}.

• Surjectivity: for h ∈ G,

ϕa(a
−1ha) = aa−1haa−1 = h.

N.B. The proof of surjectivity also shows that (ϕa)
−1 = ϕa−1 .

Automorphisms of the form ϕa are called inner. We shall prove that the set Inn(G) of
inner automorphisms is a subgroup of Aut(G). We know that the image of a group
homomorphism is a subgroup of the target group, so it suffices to prove that the
map

h : G −→ Aut(G)
a 7−→ ϕa

is a group homomorphism to get Inn(G) = Imh < Aut(G).
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Let a, b ∈ G. For every g ∈ G,

h(ab)(g) = ϕab(g)

= (ab)g(ab)−1

= abgb−1a−1

= aϕb(g)a−1

= ϕa (ϕb(g))

= ϕa ◦ ϕb(g)

= h(a) ◦ h(b)(g).

Therefore h(ab) = h(a) ◦ h(b) and h ∈ Hom(G,Aut(G)).

Since Inn(G) = Imh by definition, the First Isomorphism Theorem implies that
Inn(G) is isomorphic to G/ kerh.

The kernel of h is the set of elements a ∈ G such that ϕa = Id, that is, the elements a
such that aga−1 = g for all g ∈ G. Left multiplying by a−1, we see that a is in kerh if
and only if a is in the center Z(G) of G.

As a conclusion,
Aut(G) > Inn(G) ' G/Z(G).
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