Major Facts about Rings

Axioms of Rings

A nonempty set R equipped with two binary operations, addition and multiplication, is called a ring if for all $a, b, c \in R$:

1. $a+b=b+a$;
2. $(a+b)+c=a+(b+c)$;
3. there is $0 \in R$ such that $a+0=a$ for all $a \in R$ (additive identity);
4. there is $-a \in R$ such that $a+(-a)=0$;
5. $a(b c)=(a b) c$;
6. $a(b+c)=a b+b c$ and $(b+c) a=b a+c a$.

FACT 1. (Rules of multiplication) Let R be a ring and $a, b, c \in R$. Then

1. $a 0=0 a=0$;
2. $a(-b)=(-a) b=-(a b)$;
3. $(-a)(-b)=a b$;
4. $a(b-c)=a b-a c$ and $(b-c) a=b a-c a$.

Furthermore, if R and a unity element 1, then
5. $(-1) a=-a$;
6. $(-1)(-1)=1$.

FACT 2. (Uniqueness of the Unity and Inverses)

 If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.
Fact 3. (Subring Test)

Let $S \in R$ by a subset of a ring R. Then S is a subring if and only if S is closed under subtraction and multiplication, that is, $a-b \in S$ and $a b \in S$ for all $a, b \in S$.

