MAJOR FACTS ABOUT RING HOMOMORPHISMS

FACT 1. (Properties of Ring Homomorphisms)

Let $\varphi : R \to S$ be a ring homomorphism, $A \subset R$ be a subring, and $B \subset S$ be an ideal. **Then**

- 1. for every $r \in R$ and every positive integer n, $\varphi(nr) = n\varphi(r)$ and $\varphi(r^n) = (\varphi(r))^n$;
- 2. $\varphi(A) = \{\varphi(a) \mid a \in A\}$ is a subring of S;
- 3. <u>if</u> A is an ideal and φ is <u>onto</u> S, <u>then</u> $\varphi(A)$ is an ideal;
- 4. $\varphi^{-1}(B) = \{r \in R \mid \varphi(r) \in B\}$ is an ideal of R;
- 5. <u>if</u> R is commutative, <u>then</u> $\varphi(R)$ is commutative;
- 6. <u>if</u> R has unity 1, S is not trivial, and φ is <u>onto</u>, <u>then</u> $\varphi(1)$ is the unity of S;
- 7. φ is an isomorphism **if and only if** φ is <u>onto</u> and ker $\varphi = \{0\}$;
- 8. <u>if</u> φ is an isomorphism, <u>then</u> $\varphi^{-1}: S \to R$ is also an isomorphism.
- FACT 2. (Kernels Are Ideals) Let R and S be rings and $\varphi : R \to S$ be a ring homomorphism. <u>Then</u> the kernel ker $\varphi = \{r \in R \mid \varphi(r) = 0\}$ is an ideal of R.
- FACT 3. (First Isomorphism Theorem for Rings) Let $\varphi : R \to S$ be a ring homomorphism. <u>Then</u> $R/\ker \varphi \approx \varphi(R)$ with an isomorphism given by $r + \ker \varphi \mapsto \varphi(r)$.
- FACT 4. (Ideals are Kernels) Every ideal A of a ring R is the kernel of a ring homomorphism $R \to R/A$ given by $r \mapsto r + A$.
- FACT 5. (Homomorphisms from \mathbb{Z} to a Ring with Unity) Let R be a ring with unity 1. <u>Then</u> the mapping $\varphi : \mathbb{Z} \to R$ given by $n \mapsto n \cdot 1$ is a ring homomorphism.
 - COROLLARY 5.1. If R is a ring with unity and char R = n > 0, then R contains a subring isomorphic to \mathbb{Z}_n . If char R = 0, then R contains a subring isomorphic to \mathbb{Z} .
 - COROLLARY 5.2. For any positive integer m, the mapping $\varphi : \mathbb{Z} \to \mathbb{Z}_m$ given by $x \mapsto x \mod m$ is a ring homomorphism.
 - COROLLARY 5.3. If F is a field and char F = p, then F contains a subfield isomorphic to \mathbb{Z}_p . If char F = 0, then R contains a subfield isomorphic to \mathbb{Q} .