(Ir)Reducibility Tests for Polynomials

Test 1. (Reducibility Test for Degrees 2 and 3)

Let F be a field, $f(x) \in F[x]$, and $\operatorname{deg} f(x)=2$ or 3 . Then $f(x)$ is reducible over F if and only if $f(x)$ has a zero in F.

Test 2. (\mathbb{Q} implies \mathbb{Z})
Let $f(x) \in \mathbb{Z}[x]$. If $f(x)$ is reducible over $\mathbb{Q}, \quad \underline{\text { then }}$ it is also reducible over \mathbb{Z}.

Test 3.
Let p be a prime number and $f(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} f(x) \geq 1$. Let $\bar{f}(x) \in \mathbb{Z}_{p}[x]$ be obtained from $f(x)$ by reducing all the coefficients modulo p. If $\bar{f}(x)$ is irreducible over \mathbb{Z}_{p} and $\operatorname{deg} \bar{f}(x)=\operatorname{deg} f(x)$, then $f(x)$ is irreducible over \mathbb{Q}.

Test 4. (Eisenstein's Criterion)

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$. If there is a prime p such that $p\left|a_{n-1}, p\right| a_{n-2}, \ldots, p \mid a_{0}$, but $p \nmid a_{n}$ and $p^{2} \chi a_{0}$, then $f(x)$ is irreducible over \mathbb{Q}.

Corollary 4.1. (Irreducibility of Cyclotomic Polynomials)

Let $\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1$ be the p-th cyclotomic polynomial for $p \geq 2$. Then $\Phi_{p}(x)$ is irreducible over \mathbb{Q} if and only if p is prime.

