(IR)REDUCIBILITY TESTS FOR POLYNOMIALS

TEST 1. (Reducibility Test for Degrees 2 and 3)

Let F be a field, $f(x) \in F[x]$, and deg f(x) = 2 or 3. Then f(x) is reducible over F if and only if f(x) has a zero in F.

TEST 2. (\mathbb{Q} implies \mathbb{Z})

Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is also reducible over \mathbb{Z} .

Test 3.

Let p be a prime number and $f(x) \in \mathbb{Z}[x]$ with deg $f(x) \ge 1$. Let $\overline{f}(x) \in \mathbb{Z}_p[x]$ be obtained from f(x) by reducing all the coefficients modulo p. If $\overline{f}(x)$ is irreducible over \mathbb{Z}_p and deg $\overline{f}(x) = \text{deg } f(x)$, then f(x) is irreducible over \mathbb{Q} .

TEST 4. (Eisenstein's Criterion)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$. If there is a prime p such that $p \mid a_{n-1}, p \mid a_{n-2}, \dots, p \mid a_0, \text{ but } p \not| a_n \text{ and } p^2 \not| a_0, \text{ then } f(x)$ is irreducible over \mathbb{Q} .

COROLLARY 4.1. (Irreducibility of Cyclotomic Polynomials)

Let $\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$ be the *p*-th cyclotomic polynomial for $p \ge 2$. Then $\Phi_p(x)$ is irreducible over \mathbb{Q} if and only if *p* is prime.