
Reducibility over Q implies reducibility over Z

Let f(x) ∈ Z[x] and f(x) = g(x)h(x) such that g(x), h(x) ∈ Q[x]. We need to show that

it is possible to find g′(x), h′(x) ∈ Z[x] such that f(x) = g′(x)h′(x).

Step 1: It is possible to find a positive integer c and integer polynomials g′(x), h′(x) ∈ Z[x]

such that cf(x) = g′(x)h′(x).

Indeed, let a be the least common multiple of the denominators of all coefficients from

g(x) and b be such least common multiple for h(x). Take g′(x) = ag(x) and h′(x) = bh(x).

Then g′(x), h′(x) ∈ Z[x].

Example: if g(x) = 3x3− 2
3x2+ 7

5x+ 1
2 , then a = 30 and g′(x) = 30g(x) = 90x3−20x2+42x+15.

Now, abf(x) = (ag(x))(bh(x)) = g′(x)h′(x), so let’s take c = ab. This finishes Step 1.

Step 2: Choose c to be the smallest positive number that can be used in Step 1 (we know

that at least one such number exists, so there must be the smallest one). Our goal is

to show that c = 1.

Assume that c > 1. Let p be some prime divisor of c. Let g′(x), h′(x) ∈ Zp[x] be obtained

from g′(x) and h′(x) by reducing all their coefficients modulo p. Once again, we know that

cf(x) = g′(x)h′(x)

Then (since c mod p = 0):

0 = (cf(x)) mod p = g′(x)h′(x) mod p = g′(x)h′(x)

Since Zp[x] is an integral domain (see Fact 1 from the handout about Polynomial rings),

either g′ or h′ must be zero. We can assume that g′(x) = 0. This means that all coefficients

of g′(x) are divisible by p. Take c′ = c/p ∈ Z and g′′(x) = g′(x)/p ∈ Z[x]. Then

c′f(x) = g′′(x)h′(x)

Since c′ < c, this is a contradiction to the condition on c to be the smallest one, so our

assumption that c > 1 is wrong.

Conclusion. It follows that the minimal positive value of c from Step 1 is 1 and, hence, f(x) =

g′(x)h′(x) for some g′(x), h′(x) ∈ Z[x].


