Reducibility over \mathbb{Q} implies reducibility over \mathbb{Z}

Let $f(x) \in \mathbb{Z}[x]$ and $f(x)=g(x) h(x)$ such that $g(x), h(x) \in \mathbb{Q}[x]$. We need to show that it is possible to find $g^{\prime}(x), h^{\prime}(x) \in \mathbb{Z}[x]$ such that $f(x)=g^{\prime}(x) h^{\prime}(x)$.
Step 1: It is possible to find a positive integer c and integer polynomials $g^{\prime}(x), h^{\prime}(x) \in \mathbb{Z}[x]$ such that $c f(x)=g^{\prime}(x) h^{\prime}(x)$.
Indeed, let a be the least common multiple of the denominators of all coefficients from $g(x)$ and b be such least common multiple for $h(x)$. Take $g^{\prime}(x)=a g(x)$ and $h^{\prime}(x)=b h(x)$. Then $g^{\prime}(x), h^{\prime}(x) \in \mathbb{Z}[x]$.

Example: if $g(x)=3 x^{3}-\frac{2}{3} x^{2}+\frac{7}{5} x+\frac{1}{2}$, then $a=30$ and $g^{\prime}(x)=30 g(x)=90 x^{3}-20 x^{2}+42 x+15$.

Now, $a b f(x)=(a g(x))(b h(x))=g^{\prime}(x) h^{\prime}(x)$, so let's take $c=a b$. This finishes Step 1.
Step 2: Choose c to be the smallest positive number that can be used in Step 1 (we know that at least one such number exists, so there must be the smallest one). Our goal is to show that $c=1$.
Assume that $c>1$. Let p be some prime divisor of c. Let $\overline{g^{\prime}}(x), \overline{h^{\prime}}(x) \in \mathbb{Z}_{p}[x]$ be obtained from $g^{\prime}(x)$ and $h^{\prime}(x)$ by reducing all their coefficients modulo p. Once again, we know that

$$
c f(x)=g^{\prime}(x) h^{\prime}(x)
$$

Then (since $c \bmod p=0)$:

$$
0=(c f(x)) \bmod p=g^{\prime}(x) h^{\prime}(x) \bmod p=\overline{g^{\prime}}(x) \overline{h^{\prime}}(x)
$$

Since $\mathbb{Z}_{p}[x]$ is an integral domain (see Fact 1 from the handout about Polynomial rings), either $\overline{g^{\prime}}$ or $\overline{h^{\prime}}$ must be zero. We can assume that $\overline{g^{\prime}}(x)=0$. This means that all coefficients of $g^{\prime}(x)$ are divisible by p. Take $c^{\prime}=c / p \in \mathbb{Z}$ and $g^{\prime \prime}(x)=g^{\prime}(x) / p \in \mathbb{Z}[x]$. Then

$$
c^{\prime} f(x)=g^{\prime \prime}(x) h^{\prime}(x)
$$

Since $c^{\prime}<c$, this is a contradiction to the condition on c to be the smallest one, so our assumption that $c>1$ is wrong.
Conclusion. It follows that the minimal positive value of c from Step 1 is 1 and, hence, $f(x)=$ $g^{\prime}(x) h^{\prime}(x)$ for some $g^{\prime}(x), h^{\prime}(x) \in \mathbb{Z}[x]$.

