Major Facts about Polynomial Rings

FACT 1. If R is an integral domain, then $R[x]$ is an integral domain as well.

FACT 2. (Division Algorithm for $F[x]$) Let F be a field and let $f(x), g(x) \in F[x]$, such that $g(x) \neq 0$. Then there exist unique polynomials $q(x), r(x) \in F[x]$ such that $f(x)=$ $g(x) q(x)+r(x)$ and either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

Corollary 2.1. (The Remainder Theorem) Let F be a field, $a \in F$, and $f \in F[x]$.
Then $f(a)$ is the remainder in the division of $f(x)$ by $x-a$.

Corollary 2.2. (The Factor Theorem) Let F be a field, $a \in F$, and $f \in F[x]$.
Then a is a zero of $f(x)$ if and only if $x-a$ is a factor of $f(x)$.

Corollary 2.3. Let F be a field and $f \in F[x]$ a polynomial of degree n.
Then $f(x)$ has at most n zeros counting multiplicity.

