MAJOR FACTS ABOUT PERMUTATION GROUPS

- FACT 1. (Products of Disjoint Cycles) Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
- FACT 2. (Disjoint Cycles Commute) Let $\alpha = (a_1, a_2, \dots, a_m)$ and $\beta = (b_1, b_2, \dots, b_n)$ be two cycles. If α and β are disjoint (that is, have no common entries), then $\alpha\beta = \beta\alpha$.
- FACT 3. (Order of a Permutation) Let $\alpha \in S_n$ be written in disjoint cycle form. Then the order of α is the least common multiple of the lengths of the cycles.
- FACT 4. (Product of 2-Cycles) Every permutation in S_n for n > 1 is a product of (not necessarily disjoint) 2-cycles.
- FACT 5. (Identity Permutation as a Product of 2-Cycles) If $\varepsilon = \beta_1 \beta_2 \cdots \beta_r$, where all β 's are 2-cycles, then r is even.
- FACT 6. (Always Even or Always Odd) Let $\alpha \in S_n$ such that $\alpha = \beta_1 \beta_2 \cdots \beta_r$ and $\alpha = \gamma_1 \gamma_2 \cdots \gamma_s$, where all β 's and γ 's are 2-cycles. Then $r \equiv s \mod 2$.
- FACT 7. (Group of Even Permutation) The set A_n of even permutations in S_n forms a subgroup of S_n . The order of A_n is n!/2.