Major Facts about Isomorhpisms

FACT 1. (Cayley's Theorem) Every group is isomorphic to a group of permutations.

FACT 2. (Action on Group Elements) Let $\varphi : G \to \overline{G}$ be an isomorphism. Then

- a. φ maps the identity of \overline{G} into the identity of \overline{G} , that is, $\varphi(e) = \overline{e}$;
- b. for every $a \in G$ and every integer n, $\varphi(a^n) = (\varphi(a))^n$;
- c. $a, b \in G$ commute **if and only if** $\varphi(a)$ and $\varphi(b)$ commute;
- d. $|a| = |\varphi(a)|$ for all $a \in G$;
- e. fix an integer k and a group element $b \in G$. <u>Then</u> the equation $x^k = b$ has the same number of solutions in G, as does the equation $\overline{x}^k = \varphi(b)$ in \overline{G} .

FACT 3. (Action on Groups) Let $\varphi : G \to \overline{G}$ be an isomorphism. <u>Then</u>

- a. G is Abelian **if and only if** \overline{G} is Abelian;
- b. G is cyclic **if and only if** \overline{G} is cyclic;
- c. φ^{-1} is an isomorphism from \overline{G} onto G;
- d. <u>if</u> *H* is a subgroup of *G*, <u>then</u> $\varphi(H) = \{\varphi(h) \mid h \in H\}$ is a subgroup of \overline{G} .