MAJOR FACTS ABOUT HOMOMORHPISMS

FACT 1. (Properties on Group Elements) Let $\varphi : G \to \overline{G}$ be a homomorphism. Then

- a. φ maps the identity of G into the identity of \overline{G} , that is, $\varphi(e) = \overline{e}$;
- b. for every $g \in G$ and every integer n, $\varphi(g^n) = (\varphi(g))^n$;
- c. $|\varphi(g)|$ divides |g| for all $g \in G$ such that $|g| < \infty$;
- d. ker φ is a (normal) subgroup of G;
- e. **<u>if</u>** $\varphi(g) = g' \in \overline{G}$, **<u>then</u>** $\varphi^{-1}(g') = g \ker \varphi$, where $\varphi^{-1}(g') = \{x \in G \mid \varphi(x) = g'\}$.

FACT 2. (Properties of Subgroups) Let $\varphi : G \to \overline{G}$ be an homomorphism, $H \leq G$, and $\overline{K} \leq \overline{G}$. <u>Then</u>

- a. $\varphi(H) = \{\varphi(h) \mid h \in H\}$ is a subgroup of \overline{G} ;
- b. **<u>if</u>** H is cyclic, **<u>then</u>** $\varphi(H)$ is cyclic;
- c. <u>**if**</u> *H* is Abelian, <u>**then**</u> $\varphi(H)$ is Abelian;
- d. **<u>if</u>** H is normal in G, **<u>then</u>** $\varphi(H)$ is normal in \overline{G} ;
- e. <u>if</u> $|\ker \varphi| = n$, <u>then</u> φ is an *n*-to-1 mapping from G <u>onto</u> $\varphi(G)$;
- f. <u>if</u> |H| = n, then $|\varphi(H)|$ divides n;
- g. $\varphi^{-1}(\overline{K}) = \{k \in G \, | \, \varphi(k) \in \overline{K}\}$ is a subgroup of G;
- h. <u>if</u> \overline{K} is a normal subgroup in \overline{G} , <u>then</u> $\varphi^{-1}(\overline{K})$ is a normal subgroup of G;
- i. **<u>if</u>** φ is onto <u>**and**</u> ker $\varphi = \{e\}$, <u>**then**</u> φ is an isomorphism from G to \overline{G} .

FACT 3. (First Isomorphism Theorem) Let $\varphi : G \to \overline{G}$ be a homomorphism. <u>Then</u> $G/\ker \varphi \approx \varphi(G)$ and the isomorphism is given by $g \ker \varphi \mapsto \varphi(g)$.

FACT 4. (Normal Subgroups are Kernels) Every normal subgroup N of a group G is a kernel of the homomorphism from G to G/N given by $g \mapsto gN$.