MAIN PROPERTIES OF EXTERNAL DIRECT PRODUCTS

THEOREM 1. (Order of an Element in a Direct Product)

Let G_1, G_2, \ldots, G_n be groups, $g_i \in G_i$, and $(g_1, g_2, \ldots, g_n) \in G_1 \oplus G_2 \oplus \cdots \oplus G_n$. **Then** $|(g_1, g_2, \ldots, g_n)| = \operatorname{lcm}(|g_1|, |g_2|, \ldots, |g_n|).$

THEOREM 2. (When is $G \oplus H$ Cyclic)

Let G and H be finite cyclic groups. <u>Then</u> $G \oplus H$ is cyclic <u>if and only if</u> |G| and |H| are relatively prime.

- COROLLARY 2.1. (When is $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ Cyclic) An external direct product $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ of finite cyclic groups is cyclic <u>if and only if</u> $|G_i|$ and $|G_j|$ are relatively prime for all $i \neq j$.
- COROLLARY 2.2. (When $Z_{n_1n_2\cdots n_k} \approx \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_k}$) Let $m = n_1n_2\cdots n_k$. Then \mathbb{Z}_m is isomorphic to $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_k}$ if and only if n_i and n_j are relatively prime for all $i \neq j$.

THEOREM 3. (U(n) as and External Direct Product)

Let s and t be relatively prime. <u>Then</u>

a. $U(st) \approx U(s) \oplus U(t);$ b. $U_s(st) \approx U(t);$ c. $U_t(st) \approx U(s).$

COROLLARY 3.1. Let $m = n_1 n_2 \cdots n_k$ such that n_i and n_j are relatively prime for all $i \neq j$. <u>Then</u> $U(m) \approx U(n_1) \oplus U(n_2) \oplus \cdots \oplus U(n_k)$.