MAJOR FACTS ABOUT CYCLIC GROUPS

THEOREM 1. (Criterion for $a^i = a^j$) Let G be a group and $a \in G$.

- a. <u>If</u> $|a| = \infty$, <u>then</u> all distinct powers of a are distinct group elements of G;
- b. <u>If</u> |a| = n, <u>then</u> $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$ <u>and</u> $a^i = a^j$ <u>if and only if</u> $n \mid (i-j)$.

COROLLARY 1.1. For any $a \in G$, $|a| = |\langle a \rangle|$.

COROLLARY 1.2. Let $a \in G$ such that |a| = n. If $a^k = e$ for some k, then $n \mid k$.

- THEOREM 2. Let $a \in G$ such that |a| = n and let k > 0. <u>Then</u> $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ <u>and</u> $|a^k| = n/\gcd(n,k)$.
 - COROLLARY 2.1. (Criterion for $\langle a^i \rangle = \langle a^j \rangle$) Let |a| = n. <u>Then</u> $\langle a^i \rangle = \langle a^j \rangle$ <u>if and only if</u> gcd(n, i) = gcd(n, j).
 - COROLLARY 2.2. (Generators of Cyclic Groups) Let $G = \langle a \rangle$ be a cyclic group of order n. <u>Then</u> $G = \langle a^k \rangle$ if and only if gcd(n,k) = 1.

COROLLARY 2.3. (Generators of \mathbb{Z}_n) k is a generator of \mathbb{Z}_n if and only if gcd(n,k) = 1.

THEOREM 3. (Fundamental Theorem of Cyclic Groups) Let $G = \langle a \rangle$ be a cyclic group. <u>Then</u>

- a. Every subgroup of G is cyclic;
- b. **<u>If</u>** |G| = n, <u>**then**</u> the order of any subgroup of G divides n;
- c. For each positive divisor k of n, the group G has <u>exactly one</u> subgroup of order k, that is, $\langle a^{n/k} \rangle$.
- COROLLARY 3.1. (Subgroups of \mathbb{Z}_n) For each positive divisor k of n, the set $\langle n/k \rangle$ is the unique subgroup of \mathbb{Z}_n of order k. Moreover, these are the only subgroups of \mathbb{Z}_n .