Math 31: Abstract Algebra Fall 2018 - Quiz 3

Date: 11/13/18

	Test your knowledge				
True false questions (2 points each)					
1.	If A is a ring and $I \lhd A$ and $J \lhd A$ are ideals then $I \cap J$ is an ideal.	○ T:	rue		False
2.	If A is a ring with n elements and $B \leq A$ a subring. Then $\#B$ divides n.	○ T:	rue	0	False
3.	In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is a subring.	○ T:	rue	0	False
4.	In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is an ideal.	○ T:	rue	0	False
5.	If $(A, +, \cdot)$ is a commutative ring. Then the cyclic subgroup $\langle x \rangle$ of $(A, +)$ cipal ideal $Ax = (x)$ generated by x .				prin- False
6.	If $(A, +, \cdot)$ is a commutative ring and $b \in A$ a divisor of zero. Then $n \bullet$ divisor of zero.				o or a False
7.	Let $\alpha: (\mathcal{F}(\mathbb{R}), +, \cdot) \to (\mathbb{R}, +, \cdot)$ be the map defined by $\alpha(f) := f(3) - f(6)$ homomorphism.				a ring False
8.	Let $f:A\to B$ be a ring homomorphism. Then f is injective if and of f True f False	only if	$\ker(f)$) =	= {0}
9.	If n is not a prime then $(\mathbb{Z}_n, +_n, \cdot_n)$ is not an integral domain.	○ T:	rue	0	False
10.	If $(A, +, \cdot)$ is an integral domain with $char(A) = p$, where p prime. The \bigcirc True \bigcirc False	en A l	has p	elen	$_{ m nents}$