Math 31: Abstract Algebra Fall 2018 - Quiz 2

Test your knowledge

True false questions (1 points each)

- 1. Let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_1 = (17) \circ (24) \circ (68) \circ (395)$. \bigcirc True \bigcirc False
- 2. Let $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_2 = (43517) \circ (296)$. \bigcirc True \bigcirc False
- 3. Let $p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_3^{37} = p_3$. \bigcirc True \bigcirc False
- 4. For any two cycles $b, c \in (S_n, \circ)$ we have that $c \circ b = b \circ c$. \bigcirc True \bigcirc False
- 5. For two cycles $a, b \in (S_n, \circ)$, which have no number in common, we always have that $a \circ b = b \circ a$. \bigcirc True \bigcirc False
- 6. The set $S_{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}, f \text{ bijective }\}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. \bigcirc True \bigcirc False
- 7. In $\mathcal{F}(\mathbb{R})$ let ~ be the relation defined by: $f \sim g \Leftrightarrow f(3) = g(3)$. Then ~ is an equivalence relation. \bigcirc True \bigcirc False
- 8. Let (G, \cdot) be a group and H a subgroup. For a fixed $a \in G$ the function $f: aH \to Ha, ah \mapsto f(ah) := ha$ is a bijective function. \bigcirc True \bigcirc False
- 9. Let (G, \cdot) be a group and H a subgroup. Then for any $a \in G$ we have $aHa^{-1} = H$. \bigcirc True \bigcirc False
- 10. Let (G, \cdot) be a group and H a subgroup. Then if $a \in Hb$ then Ha = Hb and if $a \notin Hb$ then $Ha \neq Hb$. \bigcirc True \bigcirc False

Long answer questions

question 1 (6 points) Write down the cosets of the subgroup $\langle \frac{1}{3} \rangle$ generated by $\frac{1}{3}$.

a) For $\langle \frac{1}{3} \rangle \leq (\mathbb{R}^*, \cdot)$.

b) For $\langle \frac{1}{3} \rangle \leq (\mathbb{R}, +)$.

question 2 (4 points) Let (G, \cdot) be a group and $H \leq G$ a subgroup and $N \lhd G$ be a normal subgroup. Show that

$$H \cdot N = \{h \cdot n, h \in H, n \in N\}$$
 is a subgroup of G .