Math 31: Abstract Algebra Fall 2018 - Quiz 1

Test your knowledge

True false questions (1 point each)

- 1. $+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}$. \bigcirc True \bigcirc False
- 2. Let * be an operation on a set A. If (A, *) has a neutral element e, then e is unique. \bigcirc True \bigcirc False
- 3. Let (G, \cdot) be a group and $a, b \in G$. Then $(ab)^2 = a^2b^2$. \bigcirc True \bigcirc False
- 4. Let (G, \cdot) be a group and H and K subgroups of G. Then $H \cup K$ is a subgroup of G. \bigcirc True \bigcirc False
- 5. The set $H = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R}\}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. \bigcirc True \bigcirc False
- 6. Let (G, \cdot) be a group, $a, b \in G$ fixed and $f : G \to G, x \mapsto f(x) = axb$. Then f is bijective. \bigcirc True \bigcirc False
- 7. Let (G, \cdot) be a group. $S \subset G$, such that #S = n and $\langle S \rangle = G$. Then G has only finitely many elements. \bigcirc True \bigcirc False
- 8. If G and H are groups, such that #G = n and #H = m. Then $\#(G \times H) = n + m$. \bigcirc True \bigcirc False
- 9. $(\mathcal{F}(\mathbb{R}), \cdot)$ is a group with neutral element $1 : \mathbb{R} \to \mathbb{R}, x \mapsto 1(x) = 1$. \bigcirc True \bigcirc False
- 10. $(\mathbb{Q}, +)$ is isomorphic to $(\mathbb{Z}, +)$. **Hint:** If $F : \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. If F(q) = 1, what is $F(\frac{q}{2})$? \bigcirc True \bigcirc False

Long answer questions

question 1 (5 points) Let $G = \{e, a, b, c\}$ be a set of four elements, where e denotes the neutral element. Using an operation table, find all possible groups with four elements, where each element is its own inverse.

question 2 (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations

$$a^2 = e \quad , \quad b^3 = e \quad , \quad ab = ba.$$

a) Show that H is an abelian group.

b) How many different elements can H contain at most?