Math 31: Abstract Algebra Fall 2018 - Homework 3

Return date: Wednesday 10/03/18

keyword: isomorphisms, Cayley graphs, equivalence relations

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 1. (5 points) Isomorphic and non-isomorphic groups.

- a) Let $(E, +) = (2\mathbb{Z}, +)$ be the group of even integers. Show that E is isomorphic to \mathbb{Z} . In general, is $(n\mathbb{Z}, +)$ isomorphic to $(\mathbb{Z}, +)$?
- b) Show that $(\mathbb{R}, +)$ is not isomorphic to (\mathbb{R}^*, \cdot) , where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$. **Hint:** Look at the properties of -1 in \mathbb{R}^* . Does $(\mathbb{R}, +)$ have such an element?

exercise 2. (6 points) Consider the groups $(\mathbb{Z}_2 \times \mathbb{Z}_3, +_2 \times +_3)$ and (S_3, \circ) , where $S_3 = S(\{1, 2, 3\})$. Recall that S_3 consists of the elements

$$id$$
, $s_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $s_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $s_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $r_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $r_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.

- a) Use the operation table for $\mathbb{Z}_2 \times \mathbb{Z}_3$ from **Homework 2** to draw the Cayley graph $\Gamma_1 = \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_3, \{(1,0), (0,1)\})$.
- b) Write the operation table for (S_3, \circ) .
- c) Draw the Cayley graph $\Gamma_2 = \Gamma(S_3, \{s_1, r_1\})$ and compare it with Γ_1 .

exercise 3. (3 points) Let (G, \cdot) be a group with neutral element e. Let S be a generating set, i.e. $G = \langle S \rangle$ consisting of n elements. Let $\Gamma(G, S)$ be the corresponding Cayley graph. Show that

$$val(h) = val(e) = 2n$$
 for all $h \in G$.

exercise 4. (6 points) Prove that each of the following is an equivalence relation on the indicated set. Then describe the partition associated with the equivalence relation.

- a) In \mathbb{Q} : $q \sim r \Leftrightarrow q r \in E$, where $E = 2 \mathbb{Z}$ is the set of even integers.
- b) In \mathbb{R}^2 : $(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1^3 + y_1 = x_2^3 + y_2$.
- c) In a group (G,\cdot) : $a \sim b \Leftrightarrow$ there is an integer k such that $a^k = b^k$.