Math 31: Abstract Algebra
 Fall 2018 - Essay

Return date: Thursday 11/15/18 at 4 pm in KH 318
Instructions: Write your answers neatly and clearly, use complete sentences and label any diagrams. If you shall prove something, then show your work.

Introduction

Write a short introduction about the 2 x 2 cube and/or the 3 x 3 cube in general.

Questions

Let P_{0} be the cube in the solved position with fixed sides (i.e. front side $=$ yellow, up side $=$ green, left side $=$ orange etc.). We recall that X, where $X \in\{F, B, L, R, U, D\}$ denotes a single turn of the cube. A sequence of turns consists of a combination of a certain number of single turns.
Let C be the set of all sequences of turns. Here we assume that two elements c_{1}, c_{2} in C are equal if applied to the cube in P_{0} they both result in the same configuration of the cube.
Note: Here we assume that two configurations are different, even if they can be turned into each other by rotating the cube in space.
1.) Write down how C can be given the structure of a group (C, \cdot) and prove that it is indeed a group.
2.) Estimate the number of elements in (C, \cdot).
3.) Is C an abelian group? If so, prove it, if not, give a counterexample.
4.) Let c be an element of the group C. Show that there is a minimal $n \in \mathbb{N} \backslash\{0\}$ such that $c^{n}=e$ and that the subgroup $\langle c\rangle$ generated by c has exactly n elements. Then find a non-trivial upper bound for the order $\operatorname{ord}(c)$ of c.
Hint: Use the decomposition into disjoint cycles.
5.) Principle of conjugation: Let $\left(S_{n}, \circ\right)$ be the symmetric group on n elements and $\pi \in S_{n}$. a) Let $p \in S_{n}$ be an element of (S_{n}, \circ) and $a \in\{1,2, \ldots, n\}$. Show the equivalence:

$$
p(a)=a \Leftrightarrow \pi \circ p \circ \pi^{-1}(\pi(a))=\pi(a) .
$$

b) Let $c=\left(a_{1}, a_{2}, \ldots, a_{s}\right) \in S_{n}$ be a cycle. Then $\pi \circ c \circ \pi^{-1}$ is the cycle $\left(\pi\left(a_{1}\right), \pi\left(a_{2}\right), \ldots, \pi\left(a_{s}\right)\right)$. c) (C, \cdot) is isomorphic to a subgroup of a symmetric group. Which symmetric group(s)? Use this fact and part a) and b) to show that $F D F^{-1} \in C$ is a cycle and fixes four cubicles, i.e. four of the small cubes of the cube.

Note: You can use the principle of conjugation to find useful turns to solve the cube.
6.) Draw the Cayleygraph of the subgroup $H=\left\langle F^{2}, U^{2}\right\rangle<C$ that is generated by the elements F^{2} and U^{2} and state the group to which H is isomorphic.

Observations

Write down some observations you made while working with the cube.

