Math 31: Abstract Algebra Fall 2017 - Quiz 3

Test your knowledge

True false questions (2 points each)

	1.	If A is a r	ing and I	$\lhd A \text{ and } J$	$\lhd A$	are ideals then	$I \cap J$ is an	ı ideal.	\bigcirc True	\bigcirc) Fal
--	----	---------------	-------------	-------------------------	----------	-----------------	------------------	----------	-----------------	------------	-------

- 2. If A is a ring with n elements and $B \leq A$ a subring. Then #B divides n. \bigcirc True \bigcirc False
- 3. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is a subring. \bigcirc True \bigcirc False
- 4. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is an ideal. \bigcirc True \bigcirc False
- 5. If $(A, +, \cdot)$ is a commutative ring. Then the cyclic subgroup $\langle x \rangle$ of (A, +) is equal to the principal ideal Ax = (x) generated by x. \bigcirc True \bigcirc False
- 6. If $(A, +, \cdot)$ is a commutative ring and $b \in A$ a divisor of zero. Then $n \bullet b$ is either zero or a divisor of zero. \bigcirc True \bigcirc False
- 7. Let $\alpha : (\mathcal{F}(\mathbb{R}), +, \cdot) \to (\mathbb{R}, +, \cdot)$ be the map defined by $\alpha(f) := f(3) f(0)$. Then α is a ring homomorphism. \bigcirc True \bigcirc False
- 8. Let $f : A \to B$ be a ring homomorphism. Then f is injective if and only if ker $(f) = \{0\}$. \bigcirc True \bigcirc False
- 9. If n is not a prime then $(\mathbb{Z}_n, +_n, \cdot_n)$ is not an integral domain. \bigcirc True \bigcirc False
- 10. If $(A, +, \cdot)$ is an integral domain with char(A) = p, where p prime. Then A has p elements. \bigcirc True \bigcirc False