Math 31: Abstract Algebra
 Fall 2017 - Quiz 3

Date: 11/13/17

Test your knowledge

True false questions (2 points each)

1. If A is a ring and $I \triangleleft A$ and $J \triangleleft A$ are ideals then $I \cap J$ is an ideal.TrueFalse
2. If A is a ring with n elements and $B \leq A$ a subring. Then $\# B$ divides n.TrueFalse
3. In $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$ the set $B=\left\{(2 n, 2 n), n \in \mathbb{Z}_{5}\right\}$ is a subring.
\bigcirc TrueFalse
4. In $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$ the set $B=\left\{(2 n, 2 n), n \in \mathbb{Z}_{5}\right\}$ is an ideal.True

False
5. If $(A,+, \cdot)$ is a commutative ring. Then the cyclic subgroup $\langle x\rangle$ of $(A,+)$ is equal to the principal ideal $A x=(x)$ generated by x.TrueFalse
6. If $(A,+, \cdot)$ is a commutative ring and $b \in A$ a divisor of zero. Then $n \bullet b$ is either zero or a divisor of zero.TrueFalse
7. Let $\alpha:(\mathcal{F}(\mathbb{R}),+, \cdot) \rightarrow(\mathbb{R},+, \cdot)$ be the map defined by $\alpha(f):=f(3)-f(0)$. Then α is a ring homomorphism.TrueFalse
8. Let $f: A \rightarrow B$ be a ring homomorphism. Then f is injective if and only if $\operatorname{ker}(f)=\{0\}$. \bigcirc True \bigcirc False
9. If n is not a prime then $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ is not an integral domain.

○ True
False
10. If $(A,+, \cdot)$ is an integral domain with $\operatorname{char}(A)=p$, where p prime. Then A has p elements. \bigcirc TrueFalse

